Ph.D. Qualifying Exam in Real Analysis

January 23, 2009 A. Arsie, Z. Čučković, D. A. White

Instructions: Do 6 problems of 9. No materials are allowed. Complete explanations are expected.

- 1. (a) Define equicontinuity.
 - (b) State the Arzelá Ascoli Theorem.
 - (c) Let $\{a_n\}$, $n \in \mathbb{N}$ be a sequence of nonzero real numbers. Prove that the sequence of functions

$$f_n(x) = \frac{1}{a_n} \sin(a_n x) + \cos(x + a_n)$$

has a subsequence convergent to a continuous function.

2. Let $f \in L^1(\mathbb{R})$ and suppose that there is a countable set $S \subseteq \mathbb{R}$ so that

$$\int_{p}^{q} f(x) \, dx = 0$$

whenever p and q are not in S. Prove that f = 0 almost everywhere.

- 3. Let $f: \mathbb{R} \to \mathbb{R}$ be a continuous function and suppose that x_n and y_n , $n = 1, 2, \ldots$ are two sequences such that $\lim_{n \to \infty} |x_n y_n| = 0$. Does it follow that $\lim_{n \to \infty} |f(x_n) f(y_n)| = 0$? Prove or give a counterexample.
- 4. Let C(X) denote the continuous real valued functions defined on a compact set $X \subseteq \mathbb{R}$ and endowed with the sup norm topology.
 - (a) Suppose that $T_0 \subseteq C(X)$ consists of all polynomials of the form $p(x) = a_0 + a_1 x^2 + a_2 x^4 + \dots a_n x^{2n}$ for some real coefficients a_j , $0 \le j \le n$. Describe the closure of T_0 in C(X) if X = [0, 2]
 - (b) Describe the closure of T_0 in C(X) if X = [-2, 2]
 - (c) Suppose that $T_1 \subseteq C([0,2])$ consists of all polynomials of the form $q(x) = a_0x + a_1x^3 + a_2x^5 + \dots + a_nx^{2n+1}$. Describe the closure of T_1 in C([0,2]).

- 5. Let $f_n(x) = \frac{n \sin x}{x(1+n^2x^2)}$. Evaluate $\lim_{n\to\infty} \int_0^1 f_n dx$ or show that the limit does not exist.
- 6. Let $f:[1,\infty)\to[0,\infty)$ be a non-increasing function. Prove that

$$\int_{1}^{\infty} f(x) dx < \infty \quad \text{if and only if} \quad \sum_{k=0}^{\infty} 2^{k} f(2^{k}) < \infty.$$

7. Let \mathcal{F} be a σ -algebra on a set Ω . For each $x \in \Omega$ define

$$A_x = \cap \{B : B \in \mathcal{F} \text{ and } x \in B\}.$$

(such a set is called an atom.) Prove that for all $x, y \in \Omega$, A_x and A_y are either identical or disjoint.

8. Let μ be a finite measure on a set Ω . Suppose f is a nonnegative measurable function defined on Ω such that f^n is integrable for all $n = 1, 2, \ldots$ and that

$$\int_{\Omega} f^n \, d\mu = \int_{\Omega} f \, d\mu$$

for all n. Show that $f = \chi_E$ a.e. for some measurable set $E \subseteq \Omega$. Is the result true if we do not assume that f is nonnegative?

9. Let $f:(0,\infty)\to\mathbb{R}$ be a convex function such that $\lim_{x\to 0} f(x)=0$. Show that the function $x\mapsto \frac{f(x)}{x}$ is increasing on $(0,\infty)$.