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Instructions

Do all four problems.

Show all of your computations.
Prove all of your assertions or quote appropriate theorems.

This is a closed book examination.
This is a three hour test.



L. Let F denote the space of all distribution functions and ? - ?(') be a
statistical functional on f. Given two points F and G in the space f, suppose
that ? has a differential fr(G - F) at F with respect to a norm ll ' ll. Show that
for any G, Tb(G - F) exists aad

rb(G-F)-6'F(G-F),

where $(G - F) is the Gdteaux differential of T at F in the direction of G.

2. Let ?(F) denote the rmriance functional

T(F) _

(a,) Find the G6,teaux differential fhQ - f) of T at F in the direction of G.

(b) Find the second-order G6teaux differential f';G - F) of T at F in the
direction of G.

( . )SupposeXt, . . . ,Xni . td .F.LetF^(*) :n-LDT:, , I (Xn<
empirical distribution function. Find an expression for Rr,n - T(F.) -

T(F) -T:b(F^- F) for each n and show that tfrRrn L 0 as ?? + oo.
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3. Suppose X1, · · · , Xn are iid Bernoulli random variables with p = P [X1 = 1], 0 < p < 1.

Show that

T =

∑n
i=1(Xi − X̄)2

n− 1

is the UMVUE of p(1− p).

4. Suppose {Xn, n ≥ 1} are independent r.v.’s such that

P [Xn = 1] = P [Xn = −1] =
1

2n
and P [Xn = 0] = 1− 1

n
.

Determine whether the CLT holds by determining whether the Lindeberg condition holds.
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