Department of Mathematics The University of Toledo

Ph.D. Qualifying Examination Probability and Statistical Theory

January 29, 2011

Instructions

Do all four problems.

Show all of your computations. Prove all of your assertions or quote appropriate theorems. This is a closed book examination. This is a three hour test. 1. Let \mathcal{F} denote the space of all distribution functions and $T = T(\cdot)$ be a statistical functional on \mathcal{F} . Given two points F and G in the space \mathcal{F} , suppose that T has a differential $\phi'_F(G-F)$ at F with respect to a norm $||\cdot||$. Show that for any G, $T'_F(G-F)$ exists and

$$T'_F(G-F) = \phi'_F(G-F),$$

where $T'_F(G-F)$ is the Gâteaux differential of T at F in the direction of G.

2. Let T(F) denote the variance functional

$$T(F) = \int x^2 dF(x) - \left(\int x dF(x)\right)^2.$$

- (a) Find the Gâteaux differential $T'_F(G-F)$ of T at F in the direction of G.
- (b) Find the second-order Gâteaux differential $T''_F(G-F)$ of T at F in the direction of G.
- (c) Suppose $X_1, \ldots, X_n \stackrel{\text{i.i.d.}}{\sim} F$. Let $F_n(x) = n^{-1} \sum_{i=1}^n I(X_i \leq x)$ be the empirical distribution function. Find an expression for $R_{1n} = T(F_n) T(F) T'_F(F_n F)$ for each n and show that $\sqrt{nR_{1n}} \xrightarrow{p} 0$ as $n \to \infty$.

3. Suppose X_1, \dots, X_n are iid Bernoulli random variables with $p = P[X_1 = 1], 0 .$ $Show that <math>\sum_{n=1}^{n} (X_n = \bar{X})^2$

Page 2 of 2

$$T = \frac{\sum_{i=1}^{n} (X_i - \bar{X})^2}{n - 1}$$

is the UMVUE of p(1-p).

4. Suppose $\{X_n, n \ge 1\}$ are independent r.v.'s such that

$$P[X_n = 1] = P[X_n = -1] = \frac{1}{2n}$$
 and $P[X_n = 0] = 1 - \frac{1}{n}$.

Determine whether the CLT holds by determining whether the Lindeberg condition holds.