Ph.D. Qualifying Examination

Real Analysis January 22, 2011.

Examiners: Željko Čučković, Denis White

Instructions: Do 6 of the 8 problems. If you do more, then state which should be graded.

1. Suppose that $f \in L^1(\mathbb{R}) \cap L^{\infty}(\mathbb{R})$. Show that $f \in L^p(\mathbb{R})$ for all $p \geq 1$ and

$$\lim_{p \to \infty} \|f\|_p = \|f\|_{\infty}$$

where $\|\cdot\|_p$ denotes the $L^p(\mathbb{R})$ norm.

- 2. Let (X, d) be a compact metric space. Suppose that $f: X \to X$ is an isometry (which means that d(f(x), f(y)) = d(x, y) for all $x, y \in X$). Show that f is surjective.
- 3. (a) State the Arzela-Ascoli Theorem.
 - (b) Suppose that $\{f_n: n \in \mathbb{N}\}$ is a sequence of functions in $C^1([0,1])$ (so that f_n is continuously differentiable on [0,1]). Suppose further that, for all $n \in \mathbb{N}$

$$|f'_n(x)| \le \frac{1}{\sqrt{x}}$$
, for all x , $0 < x \le 1$

and

$$\int_0^1 f_n(x) \, dx = 0.$$

Show that a subsequence of the sequence f_n must converge uniformly on [0,1].

- 4. Consider the sequence of functions $f_n(x) = \frac{ne^x}{1 + n^2x^2}$, $n \in \mathbb{N}$, defined on [0, 1]. Evaluate the limit: $\lim_{n\to\infty} \int_0^1 f_n(x) dx$.
- 5. (a) Let $1 \le p < \infty$. Show that, if a sequence of real-valued functions $\{f_n\}$, $n \ge 1$ converges in L^p , then a subsequence converges almost everywhere.

- (b) Give an example of a sequence of functions converging to zero in $L^2(\mathbb{R})$ that does not converge almost everywhere.
- 6. Suppose that $f: \mathbb{R} \to \mathbb{R}$ is differentiable, f(0) = 0, and f'(x) > f(x) for all $x \in \mathbb{R}$. Prove that f(x) > 0 for x > 0.
- 7. Let p > 1 and define $\phi : \mathbb{R} \to \mathbb{R}$, by

$$\phi(x) = \begin{cases} x^{-1/p} & \text{if } 0 < x \le 1\\ 0 & \text{otherwise} \end{cases}$$

Let $\{r_n : n \in \mathbb{N}\}$ be a countable dense subset of \mathbb{R} and define

$$f(x) = \sum_{n=1}^{\infty} 2^{-n} \phi(x - r_n)$$

- (a) Prove that $f \in L^1(\mathbb{R})$ so that, in particular, $f(x) < \infty$ for almost all x.
- (b) Prove that f^p is not integrable on any interval (a, b), a < b.
- 8. (a) State the Baire Category Theorem.
 - (b) Suppose $\{f_n\}$ is a sequence of real valued continuous functions defined on a complete metric space X and converging pointwise to 0. Show that given any $\epsilon > 0$, there exists a non-empty open set $U \subseteq X$ and a positive integer N such that $|f_n(x)| < \epsilon$ for all x in U and all n > N.