Department of Mathematics and Statistics The University of Toledo

Ph. D. Qualifying Examination Theory of Statistics

January 21, 2012

Instructions:

Do all four problems;

Show all of your computations;

Prove all of your assertions or quote appropriate theorems;

This is three-hour closed book examination.

- 1. Let $X = (X_1, \dots, X_n) \stackrel{iid}{\sim} N(\mu, \sigma^2)$, where both $\mu \in \mathbb{R}$ and $\sigma^2 > 0$ are unknown parameters. Consider estimating μ^2 .
 - a. Show that $T_n = \bar{X}_n^2 \frac{\sum (X_i \bar{X}_n)^2}{n(n-1)}$ is the UMVUE; b. Find the Cramér-Rao Lower Bound;

 - c. Find the limiting distributions of $c_n(T_n \mu^2)$ by choosing an appropriate sequence of real numbers c_n which satisfies $c_n \to \infty$.
- 2. Let $X = (X_1, ..., X_n) \sim_{iid} E(a, \theta)$ with $a \in \mathbb{R}$ and $\theta > 0$.
 - a. Find the UMVUE of a when θ is known.
 - b. Find the UMVUE of θ when a is known.
 - c. Assume that θ is known. Find the UMVUE of $P[X_1 \ge t]$ and $\frac{d}{dt}P[X_1 \ge t]$ for a fixed t > 0.

Let (X,Y) be distributed over the square with vertices at [0,0], [β ,0], [0, β] and [β , β], with density proportional to the product xy, and with parameter space $\beta \in (0,\infty)$. That is, on this square, the joint density of (X,Y) is f(x,y) = kxy.

- a. Find k.
- b. Write and sketch the likelihood function as a function of β based upon the observed pair (x,y).
- c. Based on one observation of the vector (X,Y), show that $M=\max(X,Y)$ is a sufficient statistic for β .
- d. Find the CDF of M.
- e. Based upon this random sample of size 1 (of the vector (X,Y)), find the likelihood ratio test for testing $H_0:\beta=1$ versus the alternative $H_1:\beta\neq 1$ with level of significance α ; i.e., find a test statistic and the exact critical region as a function of α .

Now assume $\alpha = .05$.

- f. If the observation is (.4,.9), find the P-value. What is your conclusion?
- g. If the observation is (.4,.4), find the P-value. What is your conclusion?
- h. Find and plot the power function for this test.
- i. Now assume that we have n i.i.d. pairs of observations, $(X_1, Y_1), \dots, (X_n, Y_n)$, from this distribution. Note that each pair yields $M_i = \max(X_i, Y_i)$. Find the Method Moments estimator for β based on this random sample of M_1, \dots, M_n .
- j. Find the mean square error of the method of moments estimator from part i. You may use the fact that $Var(M_1) = 2\beta^2/75$ without spending the time to derive it.
- k. For testing $H_0:\beta=1$ versus the alternative $H_1:\beta \neq 1$, find a test statistic based upon $M_1, \ldots M_n$ that, for large n and under H_0 , has an approximate standard normal distribution.

4. Let X_1, \ldots, X_n be a random sample drawn from a population with density $p(x;\theta)$, where θ is a *p*-dimensional parameter contained in a parameter space Θ . Write $\mathbf{X} = (X_1, \ldots, X_n)$ and $\mathbf{x} = (x_1, \ldots, x_n)$, where \mathbf{x} is the observed value of \mathbf{X} . Let \mathcal{X}^n denote the sample space of \mathbf{X} and $L(\theta; \mathbf{x}) = \prod_{i=1}^n p(x_i;\theta)$ represent the likelihood function of θ based on the data \mathbf{x} . For a statistical model $\mathcal{P} = \{p(x;\theta) : \theta \in \Theta \subset \mathcal{R}^p\}$, show that a statistic $T(\mathbf{X})$ is sufficient for θ if for all $\mathbf{x}, \mathbf{y} \in \mathcal{X}^n$, the equality $T(\mathbf{x}) = T(\mathbf{y})$ implies that $L(\theta; \mathbf{y}) = m(\mathbf{x}, \mathbf{y})L(\theta; \mathbf{x})$ for all $\theta \in \Theta$, where $m(\mathbf{x}, \mathbf{y})$ is some function of (\mathbf{x}, \mathbf{y}) independent of θ .