Ph.D. Qualifying Examination

Real Analysis January 28, 2012.

Examiners: Željko Čučković, Denis White

Instructions: Do 6 problems of 8. If you attempt more than 6 then indicate clearly which six are to be considered. No materials are allowed.

- 1. Assume that $f: \mathbb{R} \to \mathbb{R}$ is continuous, and for all $x \neq 0$, f'(x) exists. If $\lim_{x\to 0} f'(x) = L$ exists, then does it follow that f'(0) exists? Prove or disprove.
- 2. Let g be a continuous, real valued function defined on [0,1]. Determine, with proof, conditions on g which are equivalent to the property that $\lim_{n\to\infty} \|g^n f\|_2 = 0$ for all $f \in L^2(0,1)$.
- 3. Let a measurable bounded set $X \subseteq \mathbb{R}^n$ have the property that every continuous map $f: X \to \mathbb{R}$ is uniformly continuous. Show that X is compact.
- 4. Suppose that f and g are positive, continuous functions defined on $[a, \infty)$ for some $a \in \mathbb{R}$ and suppose $\int_a^\infty g(x) dx$ diverges (as an improper Riemann integral). Show that at least one of the integrals

$$\int_{a}^{\infty} f(x)g(x) dx, \quad \int_{a}^{\infty} \frac{g(x)}{f(x)} dx$$

diverges.

- 5. Suppose that if $f: \mathbb{R} \to \mathbb{R}$ is a continuous bijection of \mathbb{R} onto \mathbb{R} then f(A) is a Borel set whenever A is a Borel set.
- 6. For $f \in L^1([0,e])$ evaluate the limit (if it exists)

$$\lim_{n \to \infty} \int_0^e n \log(1 + x/n) f(x) \, dx.$$

- 7. (a) State the Stone Weierstrass Theorem in the case of complex valued functions.
 - (b) Recall that $\cosh x = (e^x + e^{-x})/2$. Suppose that, for some continuous function $f: \mathbb{R} \to \mathbb{R}$

$$\int_0^1 f(x)(\cosh x)^{2n} dx = 0$$

for all $n \ge 1$. Show that f(x) = 0, for all $x, 0 \le x \le 1$.

(c) Give an example of a continuous function f so that

$$\int_{-1}^{1} f(x)(\cosh x)^{2n} \, dx = 0$$

for all $n \ge 1$, but f(x) is not identically zero for $-1 \le x \le 1$.

8. Let $\{f_n\}$ be a sequence of nonnegative measurable functions converging pointwise to some measurable function f on \mathbb{R} and suppose that

$$\lim_{n \to \infty} \int_{\mathbb{R}} f_n \, dx = \int_{\mathbb{R}} f \, dx < \infty.$$

Show that for each measurable set A,

$$\lim_{n \to \infty} \int_A f_n \, dx = \int_A f \, dx.$$