Ph.D. Real Analysis Qualifying Exam

Sönmez Şahutoğlu and Denis White

August 2014

This exam contains 8 problems. Do 6 problems and if you do more than 6 indicate clearly which 6 problems you wish to be graded. To get full credit you must show all your work and state all the theorems you use.

1. Let $(\Omega, \mathcal{F}, \mu)$ be a measure space.

- (a) Give the definition for $f : \Omega \to \mathbb{R}$ to be \mathcal{F} -measurable.
- (b) Let $f, g : \Omega \to \mathbb{R}$ be two \mathcal{F} -measurable functions. Show that $\{x \in \Omega : f(x) = g(x)\}$ and $\{x \in \Omega : f(x) < g(x)\}$ are \mathcal{F} -measurable.
- (c) Let $\{S_i\}$ be a sequence of measurable sets such that

$$\sum_{j=1}^{\infty} \mu(S_j) < \infty$$

Show that the set $\{x \in \Omega : x \in S_j \text{ for infinitely many values of } j\}$ is a measurable null set.

2. Let $(\Omega, \mathcal{F}, \mu)$ be a σ -finite measure space and $f \in L^1(\mu)$ is non-negative. Define $\lambda(A) = \int_A f d\mu$ for all $A \in \mathcal{F}$.

- (a) Show that λ is a measure.
- (b) Show that $\int_{\Omega} hfd\mu = \int_{\Omega} hd\lambda$ for all $h \in L^{\infty}(\mu)$.
- 3. Show that the measure space $(\Omega, \mathcal{F}, \mu)$ is σ -finite if and only if there exists $f \in L^1(\Omega, \mu)$ such that f(x) > 0 for all $x \in \Omega$.
- 4. Evaluate $\lim_{n \to \infty} \int_0^\infty \frac{n \sin(x/n)}{x + x^3} dx$. Justify your answer.
- 5. Let $\{f_j\}$ be a sequence of real valued Lebesgue measurable functions on [0, 1]. Assume that $f_j, f \in L^1([0, 1])$ for all $j, f_j \to f$ a.e. and $\|f_j\|_{L^1} \to \|f\|_{L^1}$ as $j \to \infty$. Show that $\|f_j f\|_{L^1} \to 0$ as $j \to \infty$.
- 6. Prove or disprove the following statement: Let $\{f_n\}$ be a sequence of real valued continuous functions on $[0, \pi]$ such that $|f_n(x)| \le \sin x$ for all $0 \le x \le \pi$. Then $\{f_n\}$ has a subsequence which is uniformly convergent on $[0, \pi]$.
- 7. Prove or disprove the following statement: For every real valued, continuous function f on [0, 1] such that f(0) = 0 and every $\varepsilon > 0$, there exists a real polynomial P having only ODD powers of x, that is P is of the form

$$P(x) = a_1 x^1 + a_3 x^3 + \dots + a_{2n+1} x^{2n+1},$$

such that $\sup\{|f(x) - P(x)| : 0 \le x \le 1\} \le \varepsilon$.

8. Let $\{f_n\}$ be a sequence of real bounded linear functionals on a Banach space *X*. Show that either there exists $x \in X$ so that $f_n(x) \neq 0$ for all n or there exists n such that $f_n(x) = 0$ for all $x \in X$.