Real Analysis, Ph.D. Qualifying Exam

Trieu Le and Sönmez Şahutoğlu

August 15, 2016

Instructions: Do <u>six</u> of the eight questions. You must show all your work and state all the theorems you use. No materials are allowed. 3 hours. **On this exam** *m* **stands for Lebesgue measure on** \mathbb{R} **.**

1. Let $\{f_n\}$ be a sequence of real-valued measurable functions on [0, 1] and

$$A = \{x \in [0,1] : \lim_{n \to \infty} f_n(x) \text{ exists}\}.$$

Show that *A* is measurable.

- 2. Let $0 < \varepsilon < 1$. Show that there exists a dense open set $E \subset [0, 1]$ such that $m(E) \le \varepsilon$. Can you find \tilde{E} so that $m(\tilde{E}) = \varepsilon$?
- 3. Let $S = \{ f \in C^1([0,1]) : f(0) = 0, ||f'||_{\infty} \le 1 \}.$
 - (a) Show that *S* has a compact closure in C([0, 1]) (note that the norm on C([0, 1]) is the sup-norm).
 - (b) Show that *S* has a compact closure in $L^p([0,1])$ for all $1 \le p \le \infty$.
- 4. Let $\mathcal{A} = \left\{ \sum_{n=1}^{N} c_n (1-x)^n : c_1, \dots, c_N \in \mathbb{R} \text{ and } N = 1, 2, \dots \right\}$ and $\phi \in C([0,1])$ with $\phi(1) = 0$. Show that there exists a sequence $\{f_i\} \subset \mathcal{A}$ such that $f_i \to \phi$ uniformly on [0,1] as $j \to \infty$.
- 5. Let *f* be a non-negative measurable function on [0, 1]. Find the limit

$$\lim_{n\to\infty}\int_0^1\frac{1+n}{1+nf(x)}dm(x).$$

You must show all details.

6. Let $\{f_n\}$ be a sequence of real-valued continuous functions on [0, 1] such that for every $x \in [0, 1]$, we have

$$f(x) = \sup\{|f_n(x)| : n = 1, 2, \ldots\} < \infty.$$

(a) Show that there exists a non-empty open interval $(a, b) \subset (0, 1)$ such that

$$\sup\{f(x) : a < x < b\} < \infty.$$

(b) Find an example of the sequence $\{f_n\}$ such that

$$\sup\{f(x) : 0 < x < 1\} = \infty.$$

- 7. Let $\{f_n\}$ be a sequence of real-valued measurable functions on $[1, \infty)$ and define $g_n(x) = xf_n(x)$ for all n. Assume that $\{g_n\}$ is a convergent sequence in $L^p([1, \infty))$ for some $1 \le p \le \infty$.
 - (a) Show that $\{f_n\}$ is convergent in $L^p([1,\infty))$.
 - (b) Show that $\{f_n\}$ is convergent in $L^1([1,\infty))$ if $p \neq \infty$.
 - (c) Find an example of the sequence $\{f_n\}$ such that $\{g_n\}$ is a convergent sequence in $L^{\infty}([1,\infty))$ but $\{f_n\}$ does not converge in $L^1([1,\infty))$.
- 8. Let μ be a finite positive measure on X and $f : X \to [0, \infty)$ be measurable. For each integer $n \ge 1$ denote $A_n = f^{-1}([n, \infty))$. Show that f belongs to $L^1(X, d\mu)$ if and only if $\sum_{n=1}^{\infty} \mu(A_n) < \infty$.