Real Analysis, Ph.D. Qualifying Exam

Željko Čučković and Trieu Le

September 16, 2017

Instructions: Do \underline{six} of the eight questions. You must show all your work and state all the theorems you use. No materials are allowed. 3 hours. In this exam, Lebesgue measure on \mathbb{R} or on any interval is denoted by m.

- 1. Let $\{f_n\}_{n=1}^{\infty}$ be a sequence of real-valued Lebesgue measurable functions on \mathbb{R} . Show that the following sets are measurable.
 - (a) $A = \{x \in \mathbb{R} : \text{ the sequence } \{f_n(x)\}_{n=1}^{\infty} \text{ is strictly increasing} \}.$
 - (b) $B = \left\{ x \in \mathbb{R} : \text{ the sequence } \{f_n(x)\}_{n=1}^{\infty} \text{ is unbounded} \right\}.$
- 2. Let $f_n(x) = nx^{n-1} (n+1)x^n$, $x \in (0,1)$. Show that

$$\int_{(0,1)} \sum_{n=1}^{\infty} f_n \, dm \neq \sum_{n=1}^{\infty} \int_{(0,1)} f_n \, dm$$

and
$$\sum_{n=1}^{\infty} \int_{(0,1)} |f_n| \, dm = \infty.$$

3. Let $A \subset \mathbb{R}$ be a set of finite Lebesgue measure. Suppose $f: A \to [0, \infty)$ is integrable on A. For $\epsilon > 0$, define

$$S(\epsilon) = \sum_{k=0}^{\infty} k\epsilon \, m(A_k), \quad \text{where} \quad A_k = \{x \in A : k\epsilon \le f(x) < (k+1)\epsilon\}.$$

Prove that

$$\lim_{\epsilon \to 0} S(\epsilon) = \int_A f \, dm.$$

4. Let *S* be the set of all functions *f* that are continuous on [0,1] and differentiable on (0,1) with $\int_0^1 |f'|^2 dm \le 1$. Show that *S* has a compact closure in C([0,1]) with sup-norm $\|\cdot\|_{\infty}$, where

$$||g||_{\infty} = \sup_{0 \le x \le 1} |g(x)|.$$

5. Let f be continuous on the interval [0,1]. Show that

$$\lim_{n \to \infty} n \int_{(0,1)} x^{2n} f(x) dm(x) = \frac{1}{2} f(1).$$

Suggestion: consider first f a polynomial.

- 6. For a closed, bounded interval [a, b], let $\{f_n\}$ be a sequence in C([a, b]). If $\{f_n\}$ is equicontinuous, does $\{f_n\}$ necessarily have a uniformly convergent subsequence? If $\{f_n\}$ is uniformly bounded, does $\{f_n\}$ necessarily have a uniformly convergent subsequence?
- 7. Let *f* belong to $L^p((0, \infty))$ for some $1 \le p < \infty$. Show that

$$\lim_{x \to \infty} \frac{1}{x^2} \int_{(0,x)} t f(t) \, dm(t) = 0. \tag{*}$$

Does (*) hold if f belongs to $L^{\infty}((0, \infty))$? Explain.

8. Construct a sequence $\{f_n\}_{n=1}^{\infty} \subset L^1([0,1])$ such that $||f_n||_1 \longrightarrow 0$ as $n \to \infty$ but for any $t \in [0,1]$, the sequence $\{f_n(t)\}_{n=1}^{\infty}$ does not converge.