Ph.D. QUALIFYING EXAM DIFFERENTIAL EQUATIONS Fall Semester, 2018

Alessandro Arsie, Chunhua Shan

This exam has two parts, ordinary differential equations and partial differential equations. Choose four problems in each part.

Part I: Ordinary Differential Equations

1. Suppose that $u(t), \alpha(t), \beta(t)$ are real-valued and continuous on $[a, b], \beta(t) \geq 0$ on [a, b], and

$$u(t) \le \alpha(t) + \int_a^t \beta(s)u(s)ds, \quad a \le t \le b.$$

Prove:

$$u(t) \le \alpha(t) + \int_a^t \alpha(s)\beta(s)e^{\int_s^t \beta(\tau)d\tau}ds, \quad a \le t \le b.$$

2. Consider the sequence of functions $\{y_k(t)\}_{k=0}^{\infty}$ defined by

$$\begin{cases} y_0(t) = 0, \\ y_{k+1}(t) = 2 + \int_0^t \cos^2(\tau) y_k(\tau) d\tau, & k = 0, 1, \dots \end{cases}$$

Prove that $\{y_k(t)\}_{k=0}^{\infty}$ converges uniformly on the finite interval [-N, N] where N > 0.

3. Consider the following system in the plane minus the origin written in polar coordinates (r, θ) :

$$\dot{r} = 1 - r(1 + \cos(\theta)), \quad \dot{\theta} = 1.$$

- (a) Show that there exists an annulus $D = \{(r, \theta) \in \mathbb{R}^2 | 0 < r_1 < r < r_2\}$ which is forward invariant for the system, determining suitable constants r_1 and r_2 . This means that if a solution starts at time t_0 in D, it will remain in D for all $t \geq t_0$.
- (b) Conclude that there is a periodic orbit inside D invoking a suitable result from the theory of ODEs.

4. Let $y_1(x)$ and $y_2(x)$ be two linearly independent solutions of

$$y'' + p(x)y' + q(x)y = 0,$$

where p(x) and q(x) are continuous on \mathbb{R} . Prove that all the roots of $y_1(x)$ and $y_2(x)$ are isolated, and $y_1(x)$ has exactly one root between any two successive roots of $y_2(x)$.

5. Consider the initial value problem

$$\frac{dx}{dt} = \begin{cases} -x \ln|x|, & x \neq 0 \\ 0, & x = 0 \end{cases}, \qquad x(0) = x_0.$$

where $x \in \mathbb{R}$.

- (a) Explain if there is a solution with $x_0 = 0$.
- (b) If a solution with $x_0 = 0$ exists, is it unique? Prove it or provide a counterexample.
- **6.** Solve the nonhomogeneous linear system for $x \in \mathbb{R}^2$ with the initial condition.

$$\dot{x} = \left[\begin{array}{cc} 2 & 1 \\ 1 & 2 \end{array} \right] x + \left[\begin{array}{c} e^{2t} \\ 0 \end{array} \right] \quad x(0) = \left[\begin{array}{c} 3 \\ -1 \end{array} \right].$$

7. Consider the linear system of differential equations dx/dt = Ax. Suppose A is an $n \times n$ upper-triangular matrix with all its diagonal elements equal to one. Show that any solution equals e^t multiplied by a polynomial of t of order less than n.

Part II: Partial Differential Equations

1. Find a solution to the heat equation with the initial values:

$$\begin{cases} u_t - 4u_{xx} = 0, & \text{for } -\infty < x < \infty, \ t > 0; \\ u(x,0) = 3e^{-x^2}, & \text{for } -\infty < x < \infty. \end{cases}$$

2. Let u be a positive harmonic function on the ball

$$B_r(0) = \{x \in \mathbb{R}^3 : |x| = \left(\sum_{i=1}^3 x_i^2\right)^{\frac{1}{2}} \le r\}.$$

(a) Prove that for any |x| < r,

$$\frac{r(r-|x|)}{(r+|x|)^2}u(0) \le u(x) \le \frac{r(r+|x|)}{(r-|x|)^2}u(0).$$

- (b) Show that if u is a positive harmonic function in \mathbb{R}^3 , then u is a constant function.
 - **3.** Solve the following problem

$$\begin{cases} u_{tt} - a^2 u_{xx} = 0, & x > 0, t > 0, \\ u(x, 0) = g(x), u_t(x, 0) = h(x), & x \ge 0, \\ u(0, t) = 0, & t > 0, \end{cases}$$

where a > 0.

4. Let Ω be an open bounded domain in \mathbb{R}^n , and T be a positive number. Let $\Omega_T = \Omega \times (0,T]$. The parabolic boundary of Ω_T is defined as $\Gamma_T := \overline{\Omega}_T \backslash \Omega_T$. Assume that $u(x,t) \in C^{2,1}(\Omega_T) \cap C^0(\overline{\Omega}_T)$ satisfies

$$u_t - \Delta u < 0$$
 in Ω_T .

Prove that

$$\max_{\overline{\Omega}_T} u = \max_{\Gamma_T} u.$$

5. Find all radially symmetric solutions of $\Delta u = n$ in \mathbb{R}^n for $n \geq 3$.

- **6.** Let $\Omega = \mathbb{R}^n \times (0, \infty)$, and $u \in C^2(\Omega) \cap C(\overline{\Omega})$. Suppose that u solves $u_{tt} a^2 \Delta u = 0$ in Ω where a > 0. Fix $x_0 \in \mathbb{R}^n$, $t_0 > 0$ and consider the cone $K = \{(x,t) : |x x_0| \le a(t_0 t), 0 \le t \le t_0\}$. Prove that $u \equiv 0$ within K, if $u \equiv u_t \equiv 0$ on $\{(x,t) : |x x_0| \le at_0, t = 0\}$.
 - 7. Consider the initial-boundary value problem

$$\begin{cases} u_t(x,t) + u_x(x,t) = x, & x > 0, t > 0, \\ u(x,0) = \sin x, & x > 0, \\ u(0,t) = t, & t \ge 0. \end{cases}$$

Solve this problem using the method of characteristics. Is the solution continuous along the line x = t? What happens instead if we choose as initial value $u(x, 0) = \cos x$?