Department of Mathematics The University of Toledo

Ph.D. Qualifying Examination **Probability and Statistical Theory**

September 29, 2018

Instructions Do all four problems.

Show all of your computations. Prove all of your assertions or quote appropriate theorems. This is a closed book examination. This is a three hour test. 1 Let $X \ge 0$ be a random variable on (Ω, \mathcal{A}, P) and $\int_{\Omega} X dP = a, 0 < a < \infty$. Show the set function ν defined on \mathcal{A} as follows.

$$\nu(A) = \frac{1}{a} \int_A X dP$$

is a probability measure on \mathcal{A} .

2. Let $\{X_n, n \ge 1\}$ be a sequence of random variables Show $X_n \xrightarrow{P} 0$ if and only if

$$\operatorname{E}\left(\frac{X_n^2}{1+X_n^2}\right) \to 0$$

Probability and Statistical Theory

3. [25 points] Let $\{X_n : n \ge 1\}$ be a sequence of random variables and let c be a constant. Show that if the sequence $\{X_n : n \ge 1\}$ converges in distribution to c, then the sequence $\{X_n : n \ge 1\}$ converges in probability to c.

4. [25 points] Let $\mathcal{P} = \{P_{\theta}, \ \theta \in \Theta\}$ be a family of distributions, where θ is a *p*-dimensional parameter contained in a parameter space Θ . Suppose that the distributions P_{θ} of \mathcal{P} have probability densities $p_{\theta} = \frac{dP\theta}{d\mu}$ with respect to a σ -finite measure μ . Let X_1, \ldots, X_n be a random sample drawn from a population with density p_{θ} . Write $\mathbf{X} = (X_1, \ldots, X_n)$ and $\mathbf{x} = (x_1, \ldots, x_n)$, where \mathbf{x} is the observed value of \mathbf{X} . Show that a necessary and sufficient condition for a statistic $U(\mathbf{X})$ to be sufficient for \mathcal{P} is that for any fixed θ and θ_0 , the ratio $\frac{p_{\theta}(\mathbf{x})}{p_{\theta_0}(\mathbf{x})}$ is a function only of $U(\mathbf{x})$.