Real Analysis, Ph.D. Qualifying Exam

Željko Čučković and Trieu Le

September 22, 2018

Instructions: Do \underline{six} of the eight questions. You must show all your work and state all the theorems you use. No materials are allowed. 3 hours. In this exam, Lebesgue measure on \mathbb{R} or on any interval is denoted by m.

1. Let *f* be a non-negative measurable function on [0,1] such that for all integers $n \ge 1$,

$$\int_{[0,1]} f^n \, dm \leq \frac{2^n}{n^2}.$$

Show that f(x) < 2 for a.e. $x \in [0,1]$.

- 2. Let f, f_1, f_2, \ldots be functions in $L^1([0,1]) \cap L^2([0,1])$. Suppose that $f_n \to f$ in L^1 -norm.
 - (a) Show that the sequence $\{\arctan(f_n)\}$ converges to $\arctan(f)$ in L^1 -norm.
 - (b) Prove or provide a counterexample to the statement: the sequence $\{(f_n)^2\}$ converges to f^2 in L^1 -norm.
- 3. Let $A \subseteq \mathbb{R}$ be a set of Lebesgue measure zero. Show that there exists $c \in [0,1]$ such that the set $c + A = \{c + x : x \in A\}$ does <u>not</u> contain any rational number.
- 4. Suppose that $\{f_n\}_{n=1}^{\infty}$ is a sequence of functions that are continuously differentiable on [0,1]. Suppose further that, for all integers $n \ge 1$, we have $f_n(0) = 1$ and

$$|f'_n(x)| \le \frac{1}{\sqrt[4]{x}}$$
 for $0 < x \le 1$.

Show that a subsequence of $\{f_n\}_{n=1}^{\infty}$ must converge uniformly on [0,1].

5. Let f and g be nonnegative and measurable on the interval [0,1]. Suppose that

$$f(x)g(x) \ge 1 \text{ for all } x \in [0,1].$$

(a) Show that

$$\left(\int_{[0,1]} f \, dm\right) \left(\int_{[0,1]} g \, dm\right) \ge 1.$$

(b) Show that for all positive numbers p and r, we have

$$\left(\int_{[0,1]} f^p \, dm\right)^{1/p} \left(\int_{[0,1]} g^r \, dm\right)^{1/r} \ge 1.$$

- 6. Let $\{f_n\}_{n=1}^{\infty}$ be a sequence of continuous real-valued functions on \mathbb{R} . Suppose that for each $x \in \mathbb{R}$, the sequence $\{f_n(x)\}_{n=1}^{\infty}$ is bounded. Show that there exists a non-empty open interval $I \subset \mathbb{R}$ and an integer $N \geq 1$ such that $|f_n(x)| < n$ for all $x \in I$ and all integers $n \geq N$.
- 7. Let (X, d) be a compact metric space. Suppose that $f: X \to X$ is an isometry (which means that d(f(x), f(y)) = d(x, y) for all $x, y \in X$). Show that f is surjective.
- 8. Let $f : [0,1] \to \mathbb{R}$ be a continuous function such that

$$\int_{[0,1]} x^{2n} f(x) \, dm(x) = 0$$

for all positive integers $n \ge 1$. Show that f(x) = 0 for all $x \in [0,1]$.