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Topology Qualifying Exam

The Ph.D. qualifying exam committee tries to proofread the examinations
as carefully as possible. Nevertheless, the exam may contain misprints. If you
are convinced a problem has been stated incorrectly, mention this to the proctor
and indicate your interpretation in your solution. In such cases do not interpret
the problem in such a way that it becomes trivial.

Directions: Do four problems in each section. Budget your time. Write your
solution for each question on a separate page.

Section I

1. Let A and B be closed subspaces of a topological space X with X = A
⋃

B.
Suppose that f : A → Y and g : B → Y are continuous, and f(x) = g(x)
for all x ∈ A

⋂
B.

Prove that h : X → Y by

h(x) =
{

f(x) if x ∈ A
g(x) if x ∈ B

is continuous. Is it necessary for both A and B to be closed? Discuss.

2. Let f : X → Y by a quotient map. Let Y be connected and suppose that
for each y ∈ Y , f−1(y) is connected. Prove that X is connected.

3. Let I be a non empty index set, let {Xα|α ∈ I} be a family of topological
spaces, and let Aα ⊆ Xα for each α.

(a) Show that if Aα is closed in Xα for each α, then
∏

Aα is closed in∏
Xα.

(b) Show that
∏

Aα =
∏

Aα.
(c) Prove or disprove: If Aα is open in Xα for each α, then

∏
Aα is open

in
∏

Xα.

4. Let D be the closed unit disk in the complex plane. Let ∼ be the
equivalence relation on D defined by z1 ∼ z2 if and only if z1 = z2 or
|z1| = |z2| < 1. Is the quotient topological space Hausdorff? (Prove your
assertion.)

5. State the definition of compactness for topological spaces. Prove from
your definition that the closed unit interval [0, 1] is compact.
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Section II

1. Define what it means for Y to be a strong deformation retract of X, where
Y ⊆ X are topological spaces. Prove that if i : Y → X is the inclusion
map and y ∈ Y , then the induced homomorphism i∗ : π1(Y, y) → π1(X, y)
is an isomorphism.

2. Prove by any method you know that:

(a) < is not homeomorphic to <2.

(b) <2 is not homeomorphic to <3.

3. Let X1 and X2 be two copies of S2 and let N1, S1 and N2, S2 be the north
and south poles of X1 and X2, respectively. Define X to be the quotient
space obtained by identifying N1 with N2 and S1 with S2. Compute the
fundamental group of X by using the Seifert-van Kampen theorem.

4. (a) Define a covering space.

(b) State the main theorem about path lifting and covering spaces.

(c) Let S1
∨
<P 2 be the one point union of the circle and two dimen-

sional real projective space, i.e. the quotient space obtained by taking
the disjoint union of S2 and <P 2 and then identifying a single point
x ∈ S2 with a single point in y ∈ <P 2. Describe the universal cover
of S1

∨
<P 2.

(d) Describe the fundamental group of S1
∨
<P 2.

5. Prove that <2 cannot be retracted to S1.
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