Ph.D. Qualifying Examination Spring 2002

Instructions:

- 1. If you think that there is a mistake ask the proctor. If the proctor's explanation is not satisfactory, interpret the problem as you see fit, but not in such a way that the answer is trivial.
- 2. From each part solve 3 of 5 problems.
- 3. If you solve more that three problems from a part indicate the problems that you wish to have graded.

Part A

1. Find the fundamental solution of the system

$$\begin{bmatrix} \dot{x} \\ \dot{y} \\ \dot{z} \end{bmatrix} = \begin{bmatrix} 3x & +4z \\ 2x & +3z \\ -2x & +y & -2z \end{bmatrix}.$$

2. Consider the system

$$\dot{x} = \sin(t)y$$

 $\dot{y} = -\cos(t)x$

Suppose a solution u(t) = (x(t), y(t)) has initial values $u(0) = u_0 = (0, 1)$. Show that for $0 \le t \le \pi$

$$||u(t) - u_0|| \le \frac{1}{2}(1 - \sqrt{2}\cos(t - \frac{\pi}{4})).$$

3. Consider the equation $\dot{x} = Ax + B(t)x$ where A is an $n \times n$ matrix all of whose eigenvalues have strictly negative real part and B(t) is a continuous $n \times n$ -matrix valued function that satisfies $||B(t)|| \leq ce^{-\beta t}$. Prove that x(t) = 0 is an asymptotically stable solution.

4. Suppose that $X: \mathbb{R}^2 \to \mathbb{R}^2$ is a Lipschitz continuous dynamical system on \mathbb{R}^2 with flow φ_t . Let K be a compact subset of \mathbb{R}^2 that contains no singular

points. Prove that if for some $p \in \mathbf{R}^2$, $\varphi_t(p)$ enters K, then it must leave K in finite time.

5. Consider the system $\dot{x} = (1 - x^2)a(t)$ for a continuous function a(t). What condition on a(t) implies that the solution x(t) = 1 is Lyapunov stable. What condition implies that x(t) = 1 is asymptotically stable. Find an a(t) so that x(t) = 1 is uniformly asymptotically stable.

Part B

1. Find the canonical form and the general solution of the equation

$$2xu_{xx} + 2(1+xy)u_{xy} + 2yu_{yy} + \frac{2(1-x)}{1-xy}u_x + \frac{2(1-y)}{1-xy}u_y = 0.$$

2. Consider the linear system for two vector valued functions $\mathbf{E}: \mathbf{R} \times \mathbf{R}^3 \to \mathbf{R}^3$ and $\mathbf{B}: \mathbf{R} \times \mathbf{R}^3 \to \mathbf{R}^3$. If $p \in \mathbf{R} \times \mathbf{R}^3$ is represented by $p = (t, \mathbf{x})$ then $\mathbf{E}(t, \mathbf{x})$ and $\mathbf{B}(t, \mathbf{x})$ satisfy the linear system

$$\begin{aligned} \nabla \cdot \mathbf{E} &= \rho & \nabla \cdot \mathbf{B} = 0 \\ \nabla \times \mathbf{E} &= -\frac{\partial \mathbf{B}}{\partial t} & \nabla \times \mathbf{B} = \mathbf{j} + \frac{\partial \mathbf{E}}{\partial t} \end{aligned}$$

Describe the symbol of this equation and show that it is of hyperbolic type.

3. Let A_1 and A_2 be 2 × 2 matrices with $A_1 = \begin{bmatrix} A_{11} \\ A_{12} \end{bmatrix}$ and $A_2 = \begin{bmatrix} A_{21} \\ A_{22} \end{bmatrix}$ where A_{11} , A_{12} , A_{21} , and A_{22} are nonzero elements of \mathbf{R}^2 representing the rows of A_1 and A_2 . Suppose that $u(x, y) = \begin{bmatrix} u_1(x, y) \\ u_2(x, y) \end{bmatrix}$ satisfies the system

$$A_1 \frac{\partial}{\partial x} u(x, u) + A_2 \frac{\partial}{\partial y} u(x, y) = 0.$$

Also suppose that (A_{11}, A_{21}) and (A_{12}, A_{22}) are independent in \mathbf{R}^4 and that either A_{11} and A_{21} are independent or A_{12} and A_{22} independent in \mathbf{R}^2 . Show that by a change of variables of the form $w(x, y) = Cu(B\begin{bmatrix} x\\ y\end{bmatrix})$ this system can be placed in Cauchy-Kowalewski form. Here B and C are 2×2 matrices.

- (a) Give an example of a subharmonic function u on $B_R(0)$ that is not harmonic and has the boundary values $u|_{\partial B_R(0)} = \varphi$ for some continuous function φ on $\partial B_R(0)$.
- (b) Let $\Omega \subset \mathbf{R}^n$ be an open subset and let u be a harmonic function on Ω . Suppose the for $x \in \Omega$, $B_R(x)$ is a open ball about x with $B_R(x) \subset \Omega$ and let v be a subharmonic function defined on $B_R(x)$ with $u|_{\partial B_R(x)} = v|_{\partial B_R(x)}$ Show that the function

$$V(x) = \begin{cases} u(x) & x \in B_R(x)^{\sim} \\ v(x) & x \in B_R(x) \end{cases}$$

is subharmonic.

5. Consider the 2-dimensional wave equation in cylindrical coordinates $u_{tt} = u_{rr} + \frac{1}{r}u_r + \frac{1}{r^2}u_{\theta\theta}$ with domain the unit disk $D^1 = \{(r,\theta)|0 \le r < 1\}$ and t > 0 and with the boundary conditions $u(r,\theta,0) = 1 - r^2$ and $u_t(r,\theta,0) = 0$.