Ph.D. Qualifying Examination Spring 2003

Instructions:

- 1. If you think that there is a mistake ask the proctor. If the proctor's explanation is not satisfactory, interpret the problem as you see fit, but not in such a way that the answer is trivial.
- 2. From each part solve 3 of 4 problems.
- 3. If you solve more that three problems from a part indicate the problems that you wish to have graded.

Part A: ODE Questions

1. Suppose that g(v) is a continuously differentiable function from \mathbb{R}^n to \mathbb{R}^n satisfying $||Dg(v)|| \leq 2M$ and ||g(v)|| < M||v|| for some positive constant M. Consider the initial value problem

$$\dot{v} = h + g(v); \quad v(0) = 0$$

where h is a constant vector in \mathbb{R}^n . Show that the solution for t > 0, v(t) satisfies

$$||v(t) - ht|| \le \frac{||h||}{4M^2} (e^{2Mt} - (2Mt + 1)).$$

2. Find the fundamental solution of X(t) with X(0) = I to the system

$$\frac{d}{dt} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{pmatrix} = \begin{pmatrix} -x_2 + x_3 \\ x_1 + x_4 \\ -x_4 \\ x_3 \end{pmatrix}.$$

3. Consider the system $\dot{x} = h(t)Ax$ where $x : R \to R^n$, A is a constant $n \times n$ matrix, and h(t) is strictly positive and continuous. Show that 0 is asymptotically stable if all the eigenvalues of A have negative real parts and $\int_0^\infty h(t)dt$ diverges. By example show that the stability may not hold if the integral converges.

4. Let *L* be a periodic solution of a Lipschitz continuous planar autonomous system $\dot{x} = f(x)$ with flow $\phi_t : \mathbb{R}^2 \to \mathbb{R}^2$. Recall that an ϵ - neighborhood N_{ϵ} of *L* is small if N_{ϵ} contains no singular points and for any $q_1, q_2 \in N_{\epsilon}$ with $|q_1 - q_2| < 2\epsilon$,

$$\frac{\langle f(q_1), f(q_2) \rangle}{||f(q_1)|| \, ||f(q_2)||} > \frac{1}{\sqrt{2}}.$$

Suppose that $L^1 \subset N_{\epsilon}$ is a second periodic solution and that for some $p \in L$ and tranverse segment $\overline{n^1 pn}$ to L there is a $p^1 \in L^1$ with $p^1 \in \overline{n^1 pn}$. Let Tbe the smallest parameter value so that $\phi_T(p^1) \in \overline{n^1 pn}$. Show that T is the period of L^1 .

Part B: PDE Questions

1. Consider the quasi-linear system for an unknown function $u: R^n \times R \to R$ given by

$$\frac{\partial u}{\partial t} + \vec{a}(\vec{x},t) \cdot \frac{\partial u}{\partial \vec{x}} = b(\vec{x},t,u)$$

where $t \in R$ and $\vec{x} \in R^n$. Show that if \vec{a}, b are bounded and Lipshitz continuous, then the Cauchy problem with Cauchy data defined on the hyperplane $H = \{(\vec{x}, t) | t = 0\}$ has global solutions.

2. Determine the canonical form and the general solution to the second order euqation

$$4x^2u_{xx} + 4xyu_{xy} - 8y^2u_{yy} + 4xu_x - 8yu_y = 0.$$

3. Suppose that on a bounded domain Ω a function $u \in C^2(\Omega) \cap C^0(\overline{\Omega})$ satisfies $\Delta u + \lambda u^3 = 0$ in Ω with $\lambda > 0$ and u = 0 on $\partial \Omega$. Suppose that u is non-negative in Ω . Show that u is strictly positive in Ω .

4. Suppose w is a harmonic function on \mathbb{R}^n and satisfies

$$\int_{R^n} w^2(x) dx < \infty.$$

Prove that $w \equiv 0$.