
April 5, 2003

Spring 2003 Ph.D. Qualifying Exam in Real Analysis

Time 3 hours, closed book, no notes. Answer three questions from each of the parts
A & B.

Part A

1. Let E be a subset of Rn with the property that every continuous function on
E is bounded. Prove or disprove: E is compact.

2. (a) Give a careful statement of the Stone-Weierstrass Theorem for the case
of continuous complex-valued functions on a compact metric space.

(b) Let X, Y be compact metric spaces. Show that continuous complex-
valued functions of the form

F (x, y) =
n∑

i = 1

fi(x)gi(y), x ∈ X, y ∈ Y and n = {1, 2, · · ·}

where fi ∈ C(X) and gi ∈ C(Y ), are dense in the supnorm topology on
C(X × Y ) where

||G||∞ ≡ sup{|G(x, y)| : (x, y) ∈ X × Y }, G ∈ C(X × Y ).

3. (a) Let I be a closed interval on the real line with Lebesgue measure, m. For
0 < p < q show that the space Lp is contained in Lq and that

||f ||p ≤ ||f ||q[m(I)]
1
p
− 1

q .

(b) If f ∈ L1(R) with respect to Lebesgue measure and a ∈ R, prove that∫ ∞

−∞
f(x + a)dx =

∫ ∞

−∞
f(x)dx.

4. Define f(x) =
[∫ x

0
e−t2dt

]2

and g(x) =
∫ 1

0

e−x2(t2+1)

t2 + 1
dt.

(a) Show that f ′(x) + g′(x) = 0 and deduce that f(x) + g(x) = π
4 .

(b) Use (a) to prove that

lim
x→+∞

∫ x

0
e−t2dt =

√
π

2
.



5. (a) Let {fn} be a sequence of continuous real-valued functions on [0, 1] and
assume that fn ⇒ f uniformly on [0, 1]. Prove or disprove:

lim
n→∞

∫ 1− 1
n

0
fn(x)dx =

∫ 1

0
f(x)dx.

(b) Let fn(x) = 1
ne−n2x2

, x ∈ R, (n = 1, 2, 3 · · ·).

Show that fn ⇒ 0 uniformly on R, that its derivative f ′n → 0 pointwise on R
but that the convergence of {f ′n} is not uniform on any interval containing the
origin.

6. (a) What is the formula, in terms of an, of the radius of convergence of the
power series

∑∞
n=0 anzn? Prove that at any point inside the circle of

convergence the power series converges absolutely.

(b) Suppose that
∑∞

n=0 anzn has radius of convergence, 2. Given that k is a
fixed positive integer, find the radii of convergence of the following series.

i.
∞∑

n=0

ak
nzn, ii.

∞∑
n=0

anzkn, iii.
∞∑

n=0

anzn2



Part B

1. Let f : R → R. For each x ∈ R, define

ω(x) = inf{δ(f(U)) : U a neighborhood of x}

where, if E ⊂ R, δ(E) ≡ sup{|x− y| : x, y ∈ E}.

Prove the following:

(a) The function f is continuous at x if and only if ω(x) = 0.

(b) For each α ∈ R the set {x ∈ R : ω(x) < α} is open.

(c) The set {x ∈ R : f(x) is continuous} is a Gδ set.

(d) There is no real-valued function, f , on R such that {x ∈ R : f(x) is
continuous } = Q, the rational numbers in R.
(Hint: For (d) use the Baire Category Theorem to show that Q cannot
be a Gδ set in R).

2. Let (X, d) be a compact metric space. A function f : X → R is said to be
Lipschitz continuous if

||f ||d ≡ sup
{
|f(x)− f(y)|

d(x, y)
: x ∈ X, y ∈ Y, x 6= y

}
< ∞.

Denote by Lip(X, d) the collection of all Lipschitz continuous functions on X.

(a) Prove that Lip(X, d) is a Banach space under the norm

||f || = ||f ||∞ + ||f ||d

where ||f ||∞ = max{|f(x)| : x ∈ X}. Show that the multiplicative
inequality

||fg|| ≤ ||f || · ||g||, f, g ∈ Lip(X, d)

is also true.

(b) Let {fn}∞n=1 be a sequence of functions in Lip(X, d) with ||fn|| ≤ 1. Show
that there is a subsequence {fnk

} and f ∈ Lip(X, d) such that fnk
⇒ f

uniformly on X.



3. (a) Let f be a Lebesgue integrable function on the real line. Show that given
ε > 0 there is a δ > 0 such that whenever A is a Lebesgue measurable
subset of R then

m(A) < δ ⇒
∫

A
|f |dx < ε.

(b) If f ∈ C[0, 1], show that limn→∞ ||f ||n exists and compute this limit
where

||f ||n =
[∫ 1

0
|f |ndx

] 1
n

(n = 1, 2, · · ·).

4. (a) Suppose f , fn(n = 1, 2, 3, · · ·) are real-valued Lebesgue measurable functions
on R. Define what is meant by saying fn → f in m-measure. (Here m is
Lebesgue measure on R).

(b) If we identify Lebesgue measurable functions on R that agree almost
everywhere [m], show that

d(f, g) ≡
∫

R

|f − g|
1 + |f − g|

dm

is a metric on the space of Lebesgue measurable functions on R.

(c) Show that fn → f in m-measure if and only if limn→∞ d(fn, f) = 0.

5. (a) Give careful statements of the Lebesgue Monotone Convergence Theorem
and the Lebesgue Dominated Convergence Theorem.

(b) Use these theorems to establish the following:

i. lim
n→∞

∫ n

1
(1− x

n)n lnx dx =
∫ ∞

1
e−x lnx dx.

ii. lim
n→∞

∫ 1

0
(1− x

n)n lnx dx =
∫ 1

0
e−x lnx dx.


