Ph.D. Qualifying Exam

April 16, Spring 2005

Instructions:

- 1. If you think that a problem is incorrectly stated ask the proctor. If his explanation is not to your satisfaction, interpret the problem as you see fit, but not so that the answer is trivial.
- 2. From each part solve 3 of the six problems.
- 3. If you solve more than three problems from each part, indicate the problems that you wish to have graded.

Part A

1. Show that there does not exist a continuous one to one function taking

[0,1] onto $[0,1] \times [0,1]$.

2. Let M be the bounded sequences of complex numbers with the sup norm $||a|| = \sup_n(|a_n|)$. Show that M is a Banach space, and that the subspace of convergent sequences is a closed subspace.

3. If f(x) is differentiable on [a, b] and f'(a) < c < f'(b) show that there is a < x < b such that f'(x) = c.

4. Suppose that f is infinitely differentiable on [a, b] and suppose that for any $a \leq x \leq b$ the Taylor series of f(x) has positive radius of convergence at x. Use the Baire Category Theorem to show that f(x) must be analytic on a subinterval of [a, b]. Hint: Recall that the radius of convergence $\rho(z)$ is given by the expression $1/\rho(z) = \limsup_n \sqrt[n]{\frac{f(n)(z)}{n!}}$.

5. Given any finite sequence of positive reals $\{x_1, \ldots, x_n\}$, we define the arithmetic mean as $(x_1+x_2+\ldots x_n)/n$ and the geometric mean as $(x_1x_2\ldots x_n)^{1/n}$. Prove that the arithmetic mean is greater than or equal to the geometric mean.[Hint: Treat it under maxima-minima.] 6. Suppose g is a continuous function on \mathbb{R} , g(0) = 0, and g' is bounded in absolute value by M on \mathbb{R} . Then show that the series

$$\sum \frac{1}{n}g(\frac{x}{n})$$

converges and the sum is continuous. Is it differentiable?

Part B

1. If f is real valued measurable on an interval I. Sow that there exists a sequence $\{\phi_n\}$ of continuous functions converging to f in measure.

2. Suppose ϕ is infinitely differentiable in (-1, 1) and vanishes in a neighborhood of -1 and 1. Show that for any natural number N, there exists a constant $C = C_N$ such that

$$\left| \int_{-1}^{1} e^{i\lambda t} \phi(t) dt \right| \le C \lambda^{-N}$$

for all $\lambda > 0$.

3. Let $X \subset \mathbf{R}$ be a set of finite measure and suppose that f(x) defined on X is measurable. Let $\rho(f) = \int_X \frac{|f|}{1+|f|} dx$. Show that $\rho(f)$ is well defined and that the sequence of function $f_n(x)$ defined on X converges in measure if and only if $\lim_{n\to\infty} \rho(f_n) = 0$.

4. Suppose $\mu(X) < \infty$ and $f_n(x)$ converges to f(x) in measure. Show that $f_n^2(x)$ converges to $f^2(x)$ in measure. Hint: write $f_n^2 - f^2 = (f_n - f)^2 + 2f(f_n - f)$.[Hint: First prove when f is bounded.]

5. Suppose that f(x) is integrable on [a, b] and for any $a \leq c < d \leq b$, $\int_{c}^{d} f(x)dx = 0$ Show the f(x) = 0 almost every where.

6. Evaluate the limit of the sequence $\int_0^\infty n \sin(x/n)(x(1+x^2))^{-1} dx$ of integrals as n tends to ∞ . Justify the convergence of the integrals as well as the existence of the limit.