Algebra Ph.D. Qualifying Exam- April 15, 2006

Instructions: The exam is divided into three sections. Please choose exactly three problems from each section. Clearly indicate which three you would like graded. You have three hours.

 $\mathbb{Q},$ \mathbb{R} and \mathbb{C} denote, respectively, the rational numbers, the real numbers and the complex numbers.

1. Section I

- (1) Classify completely the possible isomorphism type of a group with 2006 elements.
- (2) Suppose $f : G \to A$ is a group homomorphism, A is abelian. Prove any subgroup of G which contains ker f is normal.
- (3) If G is a group, let $D = \{(x, x) : x \in G\} \leq G \times G$. Prove that G is a simple group if and only if D is a maximal subgroup of $G \times G$.
- (4) Let P be a finite p-group. Prove the center of P is nontrivial.
- (5) Recall that for subgroup $H \leq G$ we have the normalizer of H:

$$N_G(H) = \{g \in G \mid gHg^{-1} = H\}$$

and the *centralizer* of H:

$$C_G(H) = \{g \in G \mid gh = hg \; \forall h \in H\}.$$

Let G be a finite group and P a Sylow p-subgroup of G. Let π be the permutation representation of G acting on the left cosets of $N_G(P)$. Prove:

(a) $\pi(P)$ fixes exactly one letter (i.e. one coset).

(b) Suppose |P| = p and let $x \in P$, $x \neq e$. Then $\pi(x)$ is a product of one 1-cycle and a certain number of *p*-cycles.

(c) If |P| = p and $y \in N_G(P) - C_G(P)$, then $\pi(y)$ fixes at most *r*-letters where *r* denotes the number of orbits under the action of $\pi(P)$.

2. Section II

- (6) Let I and J be ideals in a commutative ring R (with 1) and suppose that I + J = R.
 - (a) Prove that $IJ = I \cap J$.
 - (b) Show that, as *R*-modules, $I \oplus J \cong R \oplus IJ$.

(c) Give an example of two such ideals I and J such that neither is principal. [*Hint:* Consider $R = \mathbb{Z}[x]$.]

(7) Let F be a field, F[x] and F[x, y] polynomial rings in one and two commuting variables.

a. Prove F[x] is a principal ideal domain. Determine all the maximal ideals.

b. Determine all the maximal ideals in F[x, y]. Is F[x, y] a principal ideal domain? Explain.

- (8) Let R be a commutative ring with identity. Prove that the subset of R containing 0 together with all zero divisors in R must contain at least one prime ideal.
- (9) Let R be a commutative Noetherian ring with 1.
 (a) If f : R → R is a surjective ring homomorphism, prove that f is an isomorphism.
 - (b) Show that the rings R and R[x] are not isomorphic.
 - (c) Give an example to show that (b) can fail if R is not Noetherian.
- (10) Let ϵ be a primitive n^{th} root of unity in the complex numbers. If m is an integer such that m > 2, show that the polynomial $x^m 2$ has no roots in $\mathbb{Q}(\epsilon)$.

3. Section III

(11) Let $f(x) \in \mathbb{Q}[x]$ with deg f = n and let K be a splitting field of f(x) over \mathbb{Q} . Suppose that the Galois group $G(K/\mathbb{Q})$ is isomorphic to the symmetric group S_n .

(a) Show that f(x) is irreducible over \mathbb{Q} .

(b) If n > 2 and α is a root of f(x) in K, show that the only automorphism of $\mathbb{Q}(\alpha)$ is the identity.

(c) If $n \geq 4$, show that $\alpha^n \notin \mathbb{Q}$.

- (12) Prove the multiplicative group of nonzero elements in a finite field is cyclic.
- (13) a. Write down a matrix which has characteristic polynomial $c(x) = (x-1)^3(x-2)^3$ and minimal polynomial $m(x) = (x-1)^2(x-2)$.
 - b. Are the two matrices below similar? Justify your answer:

	(0	2	1		(0	2	1	
A =		$^{-1}$	3	1	,		-2	5	2	
		1	-1	1 /			2	-4	$\begin{pmatrix} 1\\ 2\\ -1 \end{pmatrix}$	

- (14) Let $A, B \in M_{n \times n}(\mathbb{C})$ such that B is invertible. Prove there exists a scalar $\alpha \in \mathbb{C}$ such that $A + \alpha B$ is not invertible.
- (15) True or false All questions are for $n \times n$ matrices over \mathbb{C} unless specifically stated.
 - a. The Jordan canonical form of a diagonal matrix is the matrix itself.
 - b. Matrices with the same characteristic polynomial are similar.
 - c. Every matrix is similar to its Jordan canonical form.

d. If a linear operator has a Jordan canonical form, then there is a unique Jordan canonical basis for that operator.

e. If the characteristic polynomial of A has no multiple roots then A is diagonalizable.

f. A matrix satisfying $A^2 = A$ must be diagonalizable.

g. An invertible matrix A is diagonalizable if and only if A^{-1} is.

- h. Interchanging two columns of a matrix preserves the determinant.
- i. There exists a 5×4 matrix A such that AA^{τ} is invertible.
- j. The product of two eigenvalues of A is also an eigenvalue of A.