April 2006

Real Analysis Ph.D. Qualifying Exam Answer any six questions.

- 1. For n = 1, 2, 3..., let $f_n(x) = (1/n) \arctan(n^2 x^2)$ for x in \mathbb{R} . Show that f_n converges uniformly on the entire real line and moreover that the sequence f'_n of derivatives converges pointwise on all of \mathbb{R} . Show also that f'_n does not converge uniformly on any interval containing the origin.
- 2. Prove or disprove the following. Suppose $(a_n)_{n\geq 1}$ is a sequence of real numbers such that $\lim_{n\to\infty} a_n = 0$ and such that the partial sums

$$S_N = \sum_{n=1}^N a_n$$

are bounded for every positive integer N. Then $\sum_{n=1}^{\infty} a_n$ converges.

- 3. (a) State the Stone Weierstrass Theorem.
 - (b) Let X and Y be compact Hausdorff spaces and let C(X) denote the space of continuous functions defined on X. For $f \in C(X)$ and $g \in C(Y)$ define the function $f \otimes g$ on $X \times Y$ by $f \otimes g(x, y) = f(x)g(y)$. Show that every continuous function defined on $X \times Y$ can be approximated uniformly by a finite sum $\sum_{i=1}^{N} f_i \otimes g_i$ where $f_i \in C(X)$ and $g_i \in C(Y)$.
- 4. Suppose that $f \in L^1(\mathbb{R})$ and g, defined by g(x) = xf(x) is also in $L^1(\mathbb{R})$. Show that \hat{f} , defined by

$$\hat{f}(\xi) = \int_{-\infty}^{\infty} e^{-ix\xi} f(x) \, dx,$$

for $\xi \in \mathbb{R}$ is continuously differentiable and its derivative $\hat{f}'(\xi)$ is bounded.

- 5. (a) State the definition of equicontinuous for a set of continuous functions.
 - (b) State the Arzela-Ascoli Theorem.
 - (c) Suppose that K is a continuous real valued function defined on a square $[a, b] \times [a, b]$ and define T on the space C[a, b] of continuous functions defined on [a, b] by

$$Tf(x) = \int_{a}^{b} K(x, y) f(y) \, dy$$

Show that the image under T of a bounded set in C[a, b] has compact closure in C[a, b].

6. Suppose that $f \in L^1(\mathbb{R})$. Show that, for every $\epsilon > 0$ there is $\delta > 0$ so that, if a Borel set E has Lebesgue measure at most δ then

$$\left|\int_{E} f(x) \, dx\right| < \epsilon$$

- 7. Let $f(x) = \ln(1+x)$. Derive the MacLaurin series for f(x) and show that it converges back to f(x) in the interval (-1, 1).
- 8. Define a convex function on the real line and show that it is differentiable at all but a countable set of points.
- 9. Let $s_{n+1} = \sqrt{2 + \sqrt{s_n}}$ be a recurrence relation with $s_1 > 0$. Show that the sequence $\{s_n\}$ converges.[Show that it is monotone and bounded.]