Ph.D. Qualifying Exam: Real Analysis

April 12, 2008

Instructions: Do six of the 9 questions. No materials are allowed. **Examiners:** Rao Nagisetty; Denis White.

- 1. Suppose that $(\Omega, \mathcal{F}, \mu)$ is a finite measure space and that f_n is a sequence in $L^1(\Omega, \mathcal{F}, \mu)$ which converges to 0 in $L^1(\Omega, \mathcal{F}, \mu)$.
 - (a) Give an example to show that f_n need not converge to 0 almost everywhere.
 - (b) Show that f_n converges in measure to 0.
 - (c) Suppose that some subsequence of the f_n converges pointwise almost everywhere to some function f. Must f = 0 almost everywhere? Explain.
- 2. Suppose f and g are nonnegative integrable functions defined on a measure space $(\Omega, \mathcal{F}, \mu)$.

(a) Show that
$$\min\{\int_{\Omega} f \, d\mu, \int_{\Omega} g \, d\mu\} \ge \int_{\Omega} \min\{f, g\} \, d\mu.$$

- (b) If equality holds then what can be said about the relationship between f and g?
- 3. (a) Give an example of a sequence of bounded functions which are Riemann integrable on a compact interval [a, b] and the sequence converges pointwise to a function which is not Riemann integrable.
 - (b) Give an example of a function f which is not Lebesgue measurable on [a, b] but f^2 is.
 - (c) Give an example of a function f which is Lebesgue integrable on [a, b] but f^2 is not.
- 4. (a) State the Baire Category theorem. If you use the terminology "first category" or "second category" then you should define those terms.

- (b) Suppose that E is a complete metric space with metric d (COR-RECTION: Suppose E is a Banach space). Suppose that $X \subseteq E$ has the property that it complement X^c is countable. Show that X is set of the second category.
- 5. Prove or disprove.
 - (a) Every absolutely continuous function defined on [0,1] is of bounded variation.
 - (b) Every continuous function defined on [0,1] is of bounded variation.
 - (c) If f is continuous and increasing on [0,1] then $f(1) f(0) = \int_0^1 f'(x) dx$.
- 6. Suppose that $(\Omega, \mathcal{F}, \mu)$ is a measure space and f_n is a sequence of real valued Borel measurable functions $f_n : \Omega \to \mathbb{R}$ such that

$$\sum_{n\in\mathbb{N}}\int_{\Omega}|f_n|\,d\mu<\infty$$

Show that $\sum_{n} f_n(x)$ converges μ -almost everywhere to a function f(x) say and $f \in L^1(\mu)$ and

$$\int_{\Omega} f \, d\mu = \sum_{n \in \mathbb{N}} \int_{\Omega} f_n \, d\mu$$

7. Consider the sequence $f_n(x) = e^{-n\sqrt{x}}$. Show that, for any a > 0 f_n converges to 0 uniformly on $[a, \infty)$ but f_n does not converge uniformly on $(0, \infty)$. Compute

$$\lim_{n \to \infty} \int_0^\infty f_n(x) \, dx$$

and explain your answer.

8. Let I = [0, 1] and $K = I^n$. Fix α such that $0 < \alpha < 1$. Let S be the family of all real valued functions on K for which

$$||f||_{\alpha} = \left(\sup_{K} |f(x)| + \sup_{K \times K} \frac{|f(x) - f(y)|}{|x - y|^{\alpha}}\right) \le 1.$$

Show that the closure of S in C(K), the space of continuous functions on K with the supremum norm, is compact. 9. Let f be a continuous function on $[0, \infty)$ and $\int_0^\infty |f(x)| dx < \infty$. Assume that $\int_0^\infty f(x) e^{-nx} dx = 0$ for all integers n sufficiently large. Show that $f \equiv 0$.