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Instructions

Do all four problems.

Show all of your computations.
Prove all of your assertions or quote appropriate theorems.
This is a closed book examination.
This is a three hour test.




1. Let F be a cumulative distribution function on the real line R and a € R.
Show that

/[F(m +a) — F(z)ldz = a.

2. Let Xi,...,X, be independent random vectors, and let ¢ be the set of all
variables of the form -

z 9:(X1),

i=1

for arbitrary measurable functions g; with E{g?(X;)} < oo. Show that the
projection of an arbitrary random variable 1" with finite second moment onto

the class U is given by

S = i B(T|X;) — (n — 1)E(T).

i=1



3.

Let X;,+-+, X, be iid random variables with common probability mass
function (pmf) '

Hz;0) = 6511 + 62~ 5 =1,3,5,---,8 > 0.

1). Write down the joint pmf of Xi,---,X, and show that it belongs to
an Exponential family of distributions.

2). Show that T = 3> X, is sufficient for 6.

3). Show that T is complete for 4.

(Note: you need to verify the relevant condition(s) guaranteeing the com-
pleteness of T'.)

4). Find the distribusion of ¥y = 21,

5). Find the uniformly minimum variance unbiased estimators (UMVUEs)

of (a) 1(0) = 6% and (b} y,(8) = 64



