Department of Mathematics The University of Toledo

Ph.D. Qualifying Examination Probability and Statistical Theory

January 17, 2015

•

Instructions Do all four problems.

Show all of your computations. Prove all of your assertions or quote appropriate theorems. This is a closed book examination. This is a three hour test.

1. (20 points) Suppose the *i*th light bulb burns for an amount of time X_i and then remains burned out for time Y_i before being replaced. Suppose the X_i, Y_i are positive and independent with the X's having distribution F and the Y's having distribution G, both of which have finite mean. Let R_t be the amount of time in [0, t] that we have a working light bulb. Show that $R_t/t \to EX_i/(EX_i + EY_i)$ almost surely.

2. (30 points) Let $X = (X_1, ..., X_n) \sim_{iid} E(a, \theta)$ with $a \in \mathbb{R}$ and $\theta > 0$. a. (10 points) Find the UMVUE of a when θ is known.

b. (10 points) Find the UMVUE of θ when a is known.

c. (10 points) Assume that θ is known. Find the UMVUE of $P[X_1 \ge t]$ and $\frac{d}{dt} P[X_1 \ge t]$ for a fixed t > 0.

5

3. Let $\{X_n\}_{n\geq 1}$ be a sequence of random variables. Prove that if $X_1 \leq X_2 \leq \cdots$ and $X_n \xrightarrow{p} X$, then $X_n \xrightarrow{a \text{ s.}} X$.

4. Let X_1, \ldots, X_n be independent and identically distributed according to the normal $N(\theta, 1)$ distribution, where $\theta \in \Theta = (-\infty, \infty)$.

- (a) Find a minimal sufficient statistic for θ .
- (b) Suppose the interest is in estimation of θ^2 . Calculate the Fisher information $I(\theta^2)$ contained in X_1, \ldots, X_n about θ^2 .
- (c) Find the UMVU estimator of θ^4 and its variance. Does the UMVU estimator achieve the Cramér-Rao lower bound? Explain your reasoning.
- (d) Suppose we want to test the null hypothesis $H_0: \theta = \theta_0$ versus the alternative hypothesis $H_a: \theta \neq \theta_0$, where θ_0 is a fixed number. Find the likelihood ratio test of size α .
- (e) Let a_1, \ldots, a_n be non-random real numbers. Show that a necessary and sufficient condition for $\sum_{i=1}^{n} a_i X_i$ and $\sum_{i=1}^{n} X_i$ to be independent is $\sum_{i=1}^{n} a_i = 0$.