Real Analysis, Ph.D. Qualifying Exam

Željko Čučković and Trieu Le

April 14, 2018

Instructions: Do <u>six</u> of the eight questions. You must show all your work and state all the theorems you use. No materials are allowed. 3 hours. In this exam, Lebesgue measure on \mathbb{R} or on any interval is denoted by *m*.

1. Let *F* be a compact set in \mathbb{R} . For each integer $n \ge 1$, define

$$V_n = \bigcup_{x \in F} \left(x - \frac{1}{n}, \ x + \frac{1}{n} \right).$$

Show that

$$\lim_{n\to\infty}m(V_n)=m(F)$$

- 2. (a) State the Lebesgue Dominated Convergence Theorem.
 - (b) Prove that there does **not** exist a function $f \in L^1([0, 1])$ such that for any integer $n \ge 1$,

$$f(x) \ge n^2(1-x)x^n$$
 for all $x \in [0,1]$?

3. Let *S* be the set of all functions *f* that are continuous on [0, 1] and differentiable on (0, 1) such that f(0) = 0 and $|f'(x) + f(x)| \le 1$ for all $x \in (0, 1)$. Show that *S* has a compact closure in C([0, 1]) with sup-norm $\|\cdot\|_{\infty}$, where

$$\|g\|_{\infty} = \sup_{0 \le x \le 1} |g(x)|.$$

(Hint: for a differentiable function f on (0, 1), what is the derivative of $h(x) = f(x)e^{x}$?)

4. Give an example of a sequence of functions $f_n \in L^1([0,1])$ for all n = 1, 2, ... and a function $g \in L^1([0,1])$ with the following properties:

- 5. Let $E \subset \mathbb{R}$ be measurable with a finite measure. Let $\{f_n\}$ be a sequence of measurable real-valued functions on E that converges to a function f pointwise on E. Show that $E = \bigcup_{k=1}^{\infty} E_k$, where for each index k, the set E_k is measurable, and $\{f_n\}$ converges uniformly to f on each E_k if k > 1, and $m(E_1) = 0$.
- 6. (a) State Hölder's inequality.
 - (b) Let *f* be a function in $L^1([0, 2\pi])$. Show that

$$\left(\int_{[0,2\pi]} f(x)\sin(x)\,dm(x)\right)^2 + \left(\int_{[0,2\pi]} f(x)\cos(x)\,dm(x)\right)^2 \le \left(\int_{[0,1]} |f(x)|\,dm(x)\right)^2.$$

7. (a) State the Stone-Weierstrass Theorem.

(b) Show that the linear span of $\{x^{j}e^{ky}: j = 0, 1, 2, ...; k = 0, 1, 2, ...\}$ is dense in $C([0, 1] \times [0, 1])$, the space of real-valued continuous functions on $[0, 1] \times [0, 1]$.

- (c) Show that the span of $\{x^j e^{jy} : j = 0, 1, 2, ...\}$ is **not** dense in $C([0, 1] \times [0, 1])$.
- 8. Let *f* be a continuous function on [0, 1]. For any integer $k \ge 1$, let f_k be the step function defined on [0, 1] by $f_k(0) = 0$ and

$$f_k(x) = k \int_{\frac{j}{k}}^{\frac{j+1}{k}} f(t) dt$$
, for $\frac{j}{k} < x \le \frac{j+1}{k}$ with $0 \le j \le k-1$.

Show that f_k converges to f in L^1 -norm as $k \to \infty$.