Real Analysis, Ph.D. Qualifying Exam

Željko Čučković and Trieu Le

April 20, 2019

Instructions: Do <u>six</u> of the eight questions. You must show all your work and state all the theorems you use. No materials are allowed. 3 hours. In this exam, Lebesgue measure on \mathbb{R} or on any interval is denoted by *m*.

1. Let $f_n : \mathbb{R} \to \mathbb{R}$ be continuous for each n. Suppose that for each $x \in [0,1]$, the series $\sum_{n=1}^{\infty} f_n(x)$ converges absolutely. Show that there exist a non-empty open interval $I \subset [0,1]$ and a constant M > 0 such that

$$\sum_{n=1}^{\infty} |f_n(x)| \le M \quad \text{for all } x \in I.$$

2. (a) Let $\{f_n\}_{n=1}^{\infty}$ be a sequence of real-valued Lebesgue measurable functions on \mathbb{R} . Define

$$f(x) = \inf_{n \ge 1} f_n(x)$$
 for all $x \in \mathbb{R}$.

Show that *f* is also Lebesgue measurable.

- (b) Assuming the Monotone Convergence Theorem, prove Fatou's Lemma.
- (c) Assuming Fatou's Lemma, prove the Monotone Convergence Theorem.
- 3. Suppose $f_n : \mathbb{R} \to \mathbb{R}$ is Lebesgue measurable for each n such that $||f_n||_3 \to 0$ and $||f_n||_5 \to 0$ as $n \to \infty$. Prove or give a counterexample for each of the statements below.
 - (a) $||f_n||_2 \to 0$.
 - (b) $||f_n||_4 \to 0.$
- 4. Let f be a continuous function on [0, 1]. Find the limit

$$\lim_{\epsilon \to 0^+} \epsilon \int_{[0,1]} x^{\epsilon-1} f(x) \, dx.$$

Suggestion: consider f(x) is a polynomial first.

5. Let \mathcal{F} be the collection of all continuous functions on [0, 1] that can be represented in the form

$$f(x) = \sum_{n=0}^{\infty} a_n \cos(nx),$$

where $|a_n| \le 2^{-n}$ for all $n \ge 0$. Show that \mathcal{F} has a compact closure in C([0, 1]) with max norm.

6. Show that the following limit exists and find the limit.

$$\lim_{n\to\infty}\int_{(0,\infty)}\frac{\cos(x^n)}{1+x^n}\,dm(x).$$

7. Let $\phi \in L^{\infty}(0, \infty)$. Show that

$$\lim_{n \to \infty} \left[\int_{(0,\infty)} |\phi(x)|^n e^{-x} \, dm(x) \right]^{1/n} = \|\phi\|_{\infty}.$$

8. We say that functions f_n , for n = 1, 2, ..., integrable on a measurable set A are **equi-integrable** if for every $\epsilon > 0$ there is $\delta > 0$ such that for every measurable subset B of A, we have $\int_B |f_n| dm < \epsilon$ for n = 1, 2, ... whenever $m(B) < \delta$. Show that if $\{f_n\}$ is a pointwise convergent sequence of equi-integrable functions on a set A of finite measure, then

$$\lim_{n\to\infty}\int_A f_n\,dm=\int_A (\lim_{n\to\infty}f_n)\,dm.$$

Suggestion: use Egorov's Theorem.