TOPOLOGY QUALIFYING EXAMINATION

•

Time: Three hours.

Do FOUR problems in each section.

April 1997

Section A

- 1. Let A_1, A_2, \ldots, A_k be a collection of connected subsets of a topological space X. Suppose that each A_i is *not* disjoint from all the remaining A_i 's. Show that $Y = A_1 \cup A_2 \ldots \cup A_k$ is connected.
- Let ℝ have the "finite-closed" topology i.e., the closed sets other than ℝ and Ø are the finite subsets of ℝ. Is this space:
 - (a) connected?
 - (b) Hausdorff?
 - (c) metrizable?
 - (d) Also describe the compact subspaces of this space. Justify your answer in each case.
- 3. (a) Let X be Hausdorff topological space. Show that X is normal iff each neighborhood of a closed set F contains the closure of some neighborhood of F.
 - (b) Let A be an indexing set and let X be a topological space. Define the disjoint union of subsets X_{α} of X to be $\cup(\alpha \times X_{\alpha})$ where $\alpha \in A$ and $A \times X$ is topologized by taking a basis of open sets to be $\alpha \times U_{\alpha}$ where U_{α} is open in X_{α} . Suppose that the X_{α} are closed in $\cup X_{\alpha}(\subset X)$ and A is finite. Show that $j: \cup(\alpha \times X_{\alpha}) \longrightarrow \bigcup_{\alpha \in A} X_{\alpha}$ is an identification map.
- 4. Let $p: X \longrightarrow Y$ be a continuous map of Hausdorff spaces. Suppose that for any $y \in Y, p^{-1}(y)$ is compact and second countable and there exists an open neighborhood U_y such that $p^{-1}(U_y)$ is homeomorphic to $p^{-1}(y) \times U_y$. Prove that p is a closed map.
- 5. Let $f: X \longrightarrow Y$ be a continuous map of topological spaces. Define the graph of f to be the subset $\{(x, f(x) : x \in X)\}$ of $X \times Y$. Prove that:
 - (a) if Y is Hausdorff then the graph of f is closed.
 - (b) if X is connected then the graph of f is connected.

Section B

1. .

- (a) Compute the fundamental group of the space obtained by identifying the points x and y pictured above on the *solid* three hole torus.
- (b) Compute the fundamental group of the space obtained by identifying the points x and y on the *surface* of the three hole torus.
- 2. (a) Define the join (or product) of two compatible loops α, β in a topological space X. If γ is a third loop find an explicit homotopy between the loops $(\alpha \cdot \beta) \cdot \gamma$ and $\alpha \cdot (\beta \cdot \gamma)$.
 - (b) The space G is a topological group meaning that G is a group and also a Hausdorff topological space such that the multiplication and map taking each element to its inverse are continuous operations. Given two loops based at the identity e in G, say $\alpha(s)$ and $\beta(s)$, we have two ways to combine them: $\alpha \cdot \beta$ (join of loops as in (a)) and secondly $\alpha\beta$ using the group multiplication. Show, however, that these constructions give homotopic loops.

3. .

The annulus shown has its edges identified to form a surface S. ["Annulus" means we start with the shaded region i.e., the interior of the inner rectangle is ignored].

Identify S as one of the standard closed surfaces in the following two ways:

- (a) By cutting along PQ, represent S as a polygon with edges identified in pairs.
- (b) By cutting around the circle γ .
- 4. Let S^1 denote the unit circle with center the origin in \mathbb{R}^2 .
 - (a) Define $f: S^1 \longrightarrow S^1$ by f(x) = -x. Prove that f is homotopic to the identity map.
 - (b) Let $g: S^1 \longrightarrow S^1$ be a map which is not homotopic to the identity. Show that g(x) = -x for some x in S^1 .
- 5. Let $\pi: \tilde{X} \longrightarrow X$ be a covering space.
 - (a) Show that π is an open map.
 - (b) Show that if \tilde{X} is homeomorphic to $X \times \pi^{-1}(p)$, where $\pi(q) = p$ with q, p being base points in \tilde{X} and X, respectively, there is a continuous map $s: X \longrightarrow \tilde{X}$ such that $\pi \circ s =$ identity on X.
 - (c) Assume now that X is path-connected. Show that if there exists a continuous map $s : X \longrightarrow \tilde{X}$ such that $\pi \circ s =$ identity on X, then \tilde{X} is disconnected unless $\pi^{-1}(p)$ consists precisely of q.