
Real Analysis Qualifying Exam
January, 1999

Closed book, no notes.
Justify your answer with as much detail as possible.

Do any six (6) of the following eight (8) problems

1. Let Pn be the set of all (p1, p2, . . . , pn) such that each pi ≥ 0, and
∑

pi = 1,
and let ln denote the natural logarithm.

(a) Show that lnx ≤ x− 1, for x > 0, with equality only when x = 1.

(b) Show that
∑n

i=1 pi ln qi

pi
≤ 0, (p1, p2, . . . , pn), (q1, q2, . . . , qn) ∈ Pn,

with equality if and only if (p1, p2, . . . , pn) = (q1, q2, . . . , qn).

2. Let X = {0, 1}∞ be the set of all sequences x = (x1, x2, . . .) of 0’s and 1’s.

(a) Let Y ⊆ X consist of those x ∈ X that are eventually 0, that is, for
which there is an N(x) such that xn = 0, n ≥ N(x). Show that Y is
countable.

(b) Show that X is not countable.

(c) Show that X is in one-to-one correspondence with the unit interval.

3. Suppose {fn} and {gn} are sequences of real-valued functions defined on
a set E such that

(a)
∑

fn has uniformly bounded partial sums.

(b) gn → 0 uniformly on E.

(c) gn(x) ≥ gn+1(x), x ∈ E,n = 1, 2, . . . .

Prove that
∑

fngn converges uniformly on E.



4. Let f be a real valued function defined on an interval [a, b]. For any
sub-interval I, we define the oscillation of f over I as follows:

ωf (I) = sup
x,y∈I

|f(x)− f(y)|.

Further we define the oscillation at a point x as follows:

ωf (x) = lim
h→0

ωf ([x− h, x + h]).

(a) Show that f is continuous at x if and only if ωf (x) = 0.

(b) For each positive constant c, let Ec be the set of x such that ωf (x) ≥
c. Show that Ec is a closed set.

(c) We say that f is Riemann Integrable over [a, b] if given any ε > 0,
there exists a partition a = x0 < x1 < . . . < xn = b such that

n∑
i=1

ωf ([xi−1, xi])|xi−1 − x− i| < ε.

Show directly that the measure of Ec is 0 for every c. (Here directly
means without using the the theorem that states that the set of
discotinuities of a Riemann integrable function has Lebesgue measure
0.)

5. We know from the binomial theorem that

1 =
n∑

r=0

(
n

r

)
xr(1− x)n−r.

Show that the following identities are true.

(a) nx =
∑n

r=0 r
(
n
r

)
xr(1− x)n−r.

(b) n(n− 1)x2 + nx =
∑n

r=0 r2
(
n
r

)
xr(1− x)n−r.



6. Given a sequence {fn} of measurable functions, let E be the set of points
x for which limn→∞ fn(x) exists. Prove that E is measurable.

7. Gauss’ second mean value theorem is normally stated as follows: Assume
f and g are Riemann Integrable on [a, b] and g is monotone. Then there
exists a ξ in [a, b] such that∫ b

a

f(x)g(x)dx = g(a)
∫ ξ

a

f(x)dx + g(b)
∫ b

ξ

f(x0dx.

Proof of this in this generality is quite involved.

(a) But assuming that g is continuously differentiable, show the truth of
Gauss’ theorem.

(b) If g is monotone decreasing and g ≥ 0, show that for some ξ ∈ [a, b],∫ b

a

f(x)g(x)dx = g(a)
∫ ξ

a

f(x)dx.

8. State Stone-Weierstrass theorem and using this or otherwise show that
any continuous function of period 2π can be uniformly approximated
by trigonometric polynomials i.e., linear combinations of the functions
cos nx, sinnx, n ≥ 0.


