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SUMMARY OF RESULTS    

 

Our project has three major mile-stones for the third year: 

   Mile-stone #1:  Compare the performance of static and dynamic models through the case 

studies 

 a. SDP vs. AO* for dynamic routing on intermodal networks 

 b. Deterministic equivalent vs. PHA for stochastic programming for operational 

response 

  Mile-stone #2: Develop extensive scenarios based on loading levels at inter-modal facilities 

and transportation network, disruption and incident states, and fidelity of real-

time information, etc.  

 Mile-stone #3: Apply Static and Dynamic models for the different scenarios in a simulation 

test-bed to perform cost/benefit analysis 

   

The Research Team, made up of Dr. Alper Murat (Project PI), Dr. Ratna Babu Chinnam (Project 

Co-PI), Dr. Snehamay Khasnabis (Project Co-PI), doctoral students – Farshid Azadian and Nezir 

Aydin, has made very good progress with respect to all these three milestones over the third year.  

 

In what follows, we summarize our achievement with respect to these milestones. 

 

Mile-stone #1:  

 

Majority of our efforts for this milestone has been devoted in developing novel and technically 

rigorous methods for tackling hard-to-solve dynamic models encountered in practice and 

comparison their solutions with those of the static counterparts. We have met and exceeded our 

goals in terms of the practicality of the models and algorithms developed.  

 While we have initially aimed developing AO* algorithm based methods for solving routing 

models on stochastic time-varying schedule-based networks, the practical models proved to be 

far more complex than those that can be tackled with AO*. In practice, there are such 

complicating factors as the multiple shipments (pickup and delivery) and carrier schedules which 
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not only increase the complexity of the models but also make the solution intractable. As a result, 

we have developed mathematical programming based heuristics which are not only novel for the 

dynamic routing problems studied but also contribute to the methodological body of knowledge 

in solving similar problems. The models we developed focused on an increasingly important area 

of intermodal transportation which is the air-road air-cargo transportation. We considered 

scheduling and dynamic routing of a single truck as well as a fleet of trucks. In addition, we 

considered single access airports as well as multi-airport regions with alternative access airports. 

Lastly, we also compared static and dynamic routing strategies where the static routing implies 

the decision makers commit to a shipment scheduling and routing and does not change it. In 

comparison, the dynamic routing corresponds to the case where the decisions are made online, 

based on the real time information available, congestion state of the intermodal network, as well 

as other factors such as cargo characteristics, customer characteristics, carrier and flight 

characteristics and airport factors.  

 In terms of the operational response models, we have developed novel disruption response 

models. We have met and well exceeded this part of the milestone such that we developed not 

only deterministic equivalent and Progressive Hedging Algorithm (PHA) based approaches but 

also developed Sample Average Approximation (SAA) based approaches. One major 

contribution is the development of an extended version of the widely-used SAA approach. We 

are able to attain 5-10 folds of speed improvement while finding operational response solutions 

with same or better performance. One particular operational response model considered is the 

reliable intermodal facility selection and transportation flow allocation problem. In this model, 

we consider random disruptions causing failure of intermodal facilities (for a given duration), 

hence requiring re-routing of the transportation flow commodities through surviving facilities as 

well as through alternative means such as emergency facilities (e.g., long hauling rather than 

shipping through rail). 

 

Mile-stones #2 & #3:  

 

These two milestones aims at investigating the benefits of the models and methods developed 

while considering loading levels at inter-modal facilities and transportation network, disruption 

and incident states, and fidelity of real-time information. In these investigative studies, we 
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compared the impact of utilizing dynamic versus static routing and operational response models. 

Specifically, we sought answers for such questions as, 

1. What are the benefits of dynamic routing based on real-time information for a freight 

forwarder picking up multiple customer shipments, scheduling and assigning them to 

different flights, and delivering them to the corresponding airports on time by routing 

on the road network?  

2. What are the potential savings in responding intermodal facility disruption through re-

allocating the flow of freight to available and emergency facilities? And under what 

disruption scenarios the impact is highest?  

 

For the benefits of dynamic routing, we have studied the transportation of multi-customer air-

cargo shipment from a freight forwarder’s perspective. In evaluating different scenarios, we 

considered different distributions of customer locations, varying cargo characteristics, various 

flight itinerary options, and depot location of the freight forwarder. We have developed a case 

study using a multi-airport region in the Southern California. Similarly, for the benefit of using 

operational response models in coping with disruption in the intermodal facility network, we 

have experimented with different network scenarios, failure/disruption probabilities and 

severities, and cost of response and recovery recourse actions. 

Description of Sections A and B 

In Section A, we consider a freight forwarder's operational implementation of alternative access 

airport policy in a multi-airport region for air cargo transportation to evaluate static and dynamic 

routing policies. Given a set of heterogeneous air cargo customers and their air-cargo 

characteristics, the forwarder's problem is to simultaneously select air cargo flight itineraries and 

schedule the pickup and delivery of customer loads to the airport(s) such that the cargo is 

delivered to the airport on-time for the assigned flight itineraries. This problem is formulated as a 

novel pickup and delivery problem, where the delivery cost is both destination and time 

dependent. An efficient solution method based on Lagrangian decomposition and variable target 

method with backtracking is developed. Results of computational experiments and a practical 

case study in the Southern California demonstrate the merits of the model and show that the 
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proposed algorithm is very efficient and obtains near-optimal solutions. The contributions of this 

study are as follows: 

 

1. Formulate a novel model for the operational air cargo pickup and delivery and flight 

assignment problem of freight forwarders.  

 • This problem generalizes the well-known pickup and delivery problems (PDP) since the 

delivery cost of customer air cargo is both destination and time dependent. 

2. Develop a novel and highly efficient solution method based on the Lagrangian 

decomposition.  

 • A successive subproblem solution (SSS) technique is developed to overcome the 

challenges associated with "identical subproblems" when standard Lagrangian decomposition 

method is applied. This method is further enhanced by developing a variable target value method 

with backtracking for the subgradient optimization.    

3. Demonstrate the benefits of using dynamic routing with alternative access airports for air 

cargo transportation through a case study in Southern California multi-airport region. 

 

This study further opened up new research venues: 

 

1. The freight forwarders can use the proposed approach as a what-if tool to determine the 

depot locations to best serve their customers. They can also use it to determine which 

airports to frequent more often and which carriers to contract with in the long-term and 

make spot market purchases. The airports and airlines can use the proposed approach for 

competitiveness analysis for air cargo shipment. 

 

2. The proposed model generalizes the PDP and can be used to study similar problems in 

other application areas by other researchers. The methodology developed can be used for 

other vehicle routing problems where standard Lagrangian decomposition leads to 

identical subproblems. Similarly, existing solution methods for PDPs can be adapted to 

tackle the model and its extensions. 
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In section B, we consider disruptions in intermodal facilities used by a company to transport it 

freight. Facing a disruption scenario, the company re-allocates the flow of goods through those 

facilities that survive as well as resort to emergency alternatives (e.g., expediting). For this 

problem, we present a novel hybrid method, swarm intelligence based sample average 

approximation (SIBSAA), for solving the capacitated reliable facility location problem (CRFLP). 

The CRFLP extends the well-known capacitated fixed-cost facility problem by accounting for 

the unreliability of facilities. The standard SAA procedure, while effectively used in many 

applications, can lead to poor solution quality if the selected sample sizes are not sufficiently 

large. With larger sample sizes, however, the SAA method is not practical due to the significant 

computational effort required. The proposed SIBSAA method addresses this limitation by using 

smaller samples and repetitively applying the SAA method while injecting social learning in the 

solution process inspired by the swarm intelligence of particle swarm optimization. We report on 

experimental study results showing that the SIBSAA improves the computational efficiency 

significantly while attaining same or better solution quality than the SAA method. The results of 

computational experiments also indicate that the benefit of having flexibility in the inter-modal 

transportation system increases with increasing failure likelihood and severity. We also note that 

the flexibility levels depend on the capacity as well as various cost factors such as recourse costs. 

 



A. Operational Dynamic Routing in Inter-modal
Schedule-based Networks Using Real-time Congestion
Information: Case of Air-Road Transportation with
Alternative Access Airports

1. Introduction

This paper considers a freight forwarder’s problem of selecting air cargo flight itineraries

to a given set of heterogeneous customers and, simultaneously, planning the pickup and

airport delivery schedule of customer loads. The air cargo flight itinerary options for each

customer consist of a set of flights departing from the origin airport(s) and arriving to

the destination at different times. For each customer, the forwarder selects an itinerary

considering flight and delivery service level related costs, such as tardiness penalties. Given

the air cargo itinerary assignments, the forwarder performs the customer pickup and airport

deliveries via a fleet of trucks originating from a depot. In this paper, we formulate and

develop an efficient solution approach for freight forwarders to concurrently plan the air cargo

flight itinerary selection and pickup and delivery scheduling of multiple customer loads to

minimize the total cost of air and road transportation and service.

Over the past decade, there has been consistent growth in demand for air cargo deliveries.

According to the Bureau of Transportation Statistics (BTS), in 2007, the value of air cargo

shipment goods in the US is over $1.8 trillion, a 31% increase in just five years (Margreta

et al., 2009). Annual forecast reports by both Airbus (2010) and Boeing (2010) predict a

5.9% annual growth rate for global air cargo tonnage over the next 20 years. In response

to this growth, the air transportation network has been steadily expanding its capacity

over the past two decades. However, this capacity expansion through new airports, offering

more flights options, and investing in road connectivity cause the service zones of airports

to expand and overlap. This has resulted in the creation of Multi-Airport Regions (MARs)

where several airports accessible in a region substitute and supplement each other in meeting

the region’s demand for air transportation (Loo, 2008). These MARs provide alternative

access options for passengers as well as air cargo shippers and forwarders. For instance, air

travelers consider MARs in a region and select airports and flights primarily based on airport

access time, flight itinerary options, and frequency factors (Başar and Bhat, 2004). These

factors are also important concerns for the air cargo transportation. The shippers are mainly

concerned with the on-time delivery performance and the shipping costs, and thereby leave

the flight itinerary decisions to forwarders. The freight forwarders, intermediaries between
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shippers and carriers, constitute more than 90% of air cargo shipments (Hellermann, 2006).

In the case of MAR, the forwarders decide on which origin airport to use given the flight

itinerary options and costs. Their decisions are primarily based on such factors as airport

accessibility, proximity to the origin of the loads, flight itinerary options (e.g., frequency,

destinations). Hall (2002) proposed the Alternative Access Airport Policy (AAAP) where

considering multiple airports (and subsequently flight itinerary options) in a MAR can be

beneficial to reduce truck mileage, decrease sorting and handling costs, improve delivery

service level, and avoid congestion on both road and air network. The author discussed the

merits of AAAP for air cargo transportation using the case study of the Southern California

region.

In this paper, we consider a freight forwarder’s operational implementation of AAAP for

air cargo transportation. While Hall (2002) outlined and discussed the advantages of the

AAAP, to the best of our knowledge, there is no study on its modeling and implementation.

We model the forwarder’s problem of selecting flight itineraries for a given set of air cargo

customers, picking up their loads via a fleet of vehicles and then delivering to the airports

in the region. One decision component in this problem is the flight itinerary assignment of

the air cargo of different customers that are geographically dispersed in the MAR. These

decisions are driven by the availability of flight itinerary options, cargo drop-off cutoff times,

destination arrival times, flight itinerary costs, and tardiness penalties. The other decision

component is the multi-vehicle routing to pick up customer loads and deliver to the airports

prior to the starting time of the selected flight itineraries. These routing decisions are

affected by the locations (depot, customers and airports), starting times of the selected

flight itineraries, and the vehicle fleet size. This operational implementation of AAAP

generalizes the Many-to-Many Pickup and Delivery Problems (M-M-PDP) in several aspects.

For instance, the delivery cost of customer air cargo is both destination and time dependent.

We hereafter refer to this problem as PDP with Assignment and Time-Dependent delivery

cost (ATD-PDP).

Our contribution in this research is three fold. First, we model the operational imple-

mentation of AAAP for freight forwarders which generalizes several pickup and delivery

problems in terms of model structure and objective function. For instance, in ATD-PDP,

the delivery cost of customer air cargo is both destination and time dependent. Second, we

propose a novel and highly efficient solution method based on the Lagrangian decomposi-

tion. This method overcomes the challenges associated with ‘identical subproblems’ when

standard Lagrangian decomposition method is applied. For subgradient optimization, we
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also develop a novel variable target value method with backtracking. Third, we demonstrate

the benefits of using alternative access airports for air cargo transportation through a case

study in Southern California MAR.

The rest of this paper is organized as follows. We briefly describe the relevant literature

in Section 2. In Section 3, we present the problem formulation, network transformation and

preprocessing. The solution method is developed and properties such as convergence are

discussed in Section 4. In Section 5, we report on the results of the computational study

with experimental problem instances and a case study implementation. Section 6 concludes

with discussion and future research directions.

2. Related Literature

The freight forwarder’s operational implementation of the AAAP is closely related to the

pickup and delivery problem. Pickup and delivery problems have been extensively studied

in past decades; for a comprehensive survey see (Berbeglia et al., 2007; Berbeglia et al.,

2010; Laporte, 1992, 2009; Parragh et al., 2008a, b; Toth and Vigo, 2001). Generally, the

PDP involves routing a fleet of vehicles to satisfy a set of transportation requests between

the given origins and destinations. In the PDP, all the origin pickups must precede the

destination deliveries and be performed by the same vehicle. Moreover, each route must start

and terminate at the same location (i.e., depot). The PDP usually considers capacitated

vehicles and the goal is to minimize criteria related to a travel measure. The travel measure

can be as simple as the total travel distance for urban commercial vehicles (Miguel Andres,

2007) or more complex as the total excess riding time over the direct ride time in passenger

transportation (Diana and Dessouky, 2004). The PDP can be classified into two categories:

transportation between customers and the depot, and transportation between the pickup

and delivery locations (Parragh et al. 2008a). The proposed problem is in the latter category,

which can be further classified into paired and unpaired pickup and delivery locations.

In the paired PDP, also known as One-to-One PDP (1-1-PDP), the load picked up

from a customer location can only be delivered to one of the delivery locations. Some

customers, however, may share the same delivery location. In the stacker-crane problem

(SCP), unit loads of non-identical commodities have to be transported from the origin

to the destination using a unit capacity vehicle (see Frederickson, 1978). In the Vehicle

Routing Problem with Pickup and Delivery (VRPPD), the unit capacity requirement of

SCP is relaxed and replaced with a set of constraints based on the load properties (e.g.,

weight, volume, or unit count). A special case of the VRPPD is the VRPPD with Time
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Windows (VRPPDTW) where visiting the pickup or delivery location is only allowed during

a time window. While the VRPPD generally concerns goods transportation, the dial-a-ride

problem (DARP) addresses the passenger transportation and therefore includes additional

side constraints (e.g., maximum ride time, time windows, or service quality). Accordingly,

the objective function measures customers (in)convenience; see (Cordeau and Laporte, 2007)

for a comprehensive survey on the modeling and solution algorithms for DARP.

In comparison, the unpaired PDPs, also known as Many-to-Many PDP problems (M-M-

PDP), consider the case where any commodity can be picked up and delivered to delivery

locations that accept the commodity. The M-M-PDP was initiated with Anily and Hassin

(1992) that introduced the swapping problem (SP) for moving n-commodity objects be-

tween customers with a single unit capacity vehicle. In the SP, each customer supplies one

type of commodity and demands a different type. In addition to the n-commodity case

of the SP, there are several other single commodity problems that are studied under the

M-M-PDP where picked up loads are homogenous. Hernandez-Perez and Salazar-Gonzalez

(2004a, b, 2007) introduced and studied the one-commodity pickup and delivery traveling

salesman problem (1-PDTSP). The 1-PDTSP is the more general case of the Q-delivery trav-

eling salesman problem (Q-DTSP) by Chalasani and Motwani (1999) and the capacitated

traveling salesman problem with pickup and deliveries (CTSPPD) by Anily and Bramel

(1999). In the 1-PDTSP, a single vehicle, starting from a depot, transports goods from

pickup nodes to delivery nodes without exceeding the vehicle capacity; the objective is to

minimize the total traveling cost. Q-DTSP and CTSPPD are special cases of 1-PDTSP

where the pickup and deliver quantities are all one unit and the vehicle capacity is restricted

(i.e., Q units). Hernandez-Perez and Salazar-Gonzalez (2009) later extend their 1-PDTSP

to the Multi-Commodity One-to-One Pickup and Delivery Traveling Salesman Problem (m-

PDTSP); however, with this extension, the problem is not an M-M-PDP anymore.

The proposed problem is essentially a PDP as it consists of transporting loads from cus-

tomer sites (pickup locations) to the airports (delivery locations) in the MAR. The depot is

both the origin and destination of the vehicles; however, it is neither pickup nor a delivery

point. The proposed problem differs from the 1-1-PDP in that a customer load can be ac-

cepted by more than a single delivery location (airport). Further, it differs from the general

M-M-PDP in that the delivery cost of customer loads is time and destination dependent.

Moreover, the delivery cost structure is different than those proposed for PDPs. Accord-

ingly, we denote this problem as the PDP with Assignment and Time-Dependent delivery

cost (ATD-PDP). The use of term “assignment” indicates that the delivery cost of a cus-
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tomer’s load depends on the airport and flight itinerary selected. The proposed problem’s

characteristics have not been studied in the literature and, to the best of our knowledge,

this is the first research on PDPs with assignment and time dependent delivery costs. The

proposed problem is clearly an NP -hard problem in the strong sense as it coincides with the

VRPPD when there is only one airport and a single itinerary (accepted by all customers),

which departs late enough to complete all pickups and delivery to the airport prior to the

departure.

3. Model Formulation

In this section, we develop the model formulation of the ATD-PDP. We first discuss

the time dependent delivery cost. Next, we describe the graph transformation and present

the mixed integer programming model formulation. Last, we introduce and discuss pre-

processing steps and valid inequalities to strengthen the formulation.

Let Go = (Vo, Eo) be an undirected graph representing the network topology of the

problem where Vo is the set of nodes and Eo is the set of connecting edges. The set Vo

consists of the depot d, the set of customers (pickup locations) C, and the set of airports

(delivery locations) H; i.e., Vo = {d}∪C∪H. Let K be the set of uncapacitated homogeneous

vehicles (trucks) that originate from the depot and operate during the depot’s opening (θopd )

and closing hours (θcld ). A cost cij and a travel time tij is associated with each edge ∀ (i, j) ∈
Eo, i 6= j of the network, where cij ≥ 0 and tij ≥ 0. We assume that the triangle property

holds for the travel times and travel costs; i.e., we have tij + tjg ≥ tig and cij + cjg ≥ cig,

∀i, j, g ∈ Vo. Note that, if needed, the fixed cost of utilizing a vehicle can be captured by

adjusting the cost parameter cdj, ∀j ∈ C ∪ H. We further assume that travel time tij is

deterministic and time-independent. Without loss of generality, we assume that there are

no time windows for customers’ pickups and the service (e.g., loading and unloading) times

are negligible. The formulation can be easily extended to incorporate these considerations

as the methods presented do not rely on their absence. Let Rh be the set of flight itinerary

options available at airport h ∈ H on the day of operation. The cost of assigning a flight

itinerary r ∈ Rh to customer i is F h
ir, which accounts for the flight cost of the carrier as well

as the delivery service level related costs, such as tardiness penalties. The starting time of

the flight itinerary r is denoted by Qh
r (i.e., the cargo drop-off cutoff time for the first flight

of the itinerary). We only consider those flights that can be used on the day of operation,

e.g., Qh
r ≥ θopd .
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3.1. Time Dependent Delivery Cost

In assigning the customer i’s cargo to a flight itinerary r ∈ Rh, the freight forwarder

accounts for the airport h arrival time. The assignment is feasible only if the airport delivery

time (t) is on or before the flight itinerary starting time, i.e., t ≤ Qh
r . When a customer’s load

is delivered to an airport h at time t and there are no flights available, t > maxr∈Rh

{
Qh
r

}
,

then the air cargo is assigned to a recourse flight itinerary r0 /∈ Rh, e.g., a next day itinerary.

We assign a penalty cost F h
i0 > F h

ir ∀r ∈ Rh, for airport delivery after the departure time of

the last flight on the day of operation. Accordingly, we define the time dependent airport

delivery cost of delivering customer i’s load to airport h at time t, f (h, i, t), as follows:

f (h, i, t) =

 min
r∈Rh

{F h
ir|t ≤ Qh

r} if t ≤ max
r∈Rh

{
Qh
r

}
F h
i0, otherwise

The definition above indicates that for each customer, not all the itinerary options need to

be considered and we can identify the potential set of itinerary options that are dominated

by at least another itinerary option from the same airport. The flight itineraries that are

dominated for all customers are removed from further consideration. The flights itineraries

that are dominated only for a subset of customers are preprocessed such that their assignment

to that subset of customers is precluded. Lemma 1 provides the conditions necessary to

identify the dominated flight itineraries from airport h for customer i.

Lemma 1. Given two flight itineraries r, r′ ∈ Rh, r 6= r′, itinerary r is dominated by

itinerary r′ if (a) F h
ir′ ≤ F h

ir and Qh
r< Qh

r′ or (b) F h
ir′<F

h
ir and Qh

r ≤ Qh
r′ . Moreover, if (c)

F h
ir′=F

h
ir and Qh

r′=Q
h
r , considering either one is sufficient.

Proof. Proof The proof is evident from the definition of f (h, i, t) .

Upon the elimination of dominated itineraries, the following corollary states that there

exist no two flight itineraries for customer i at airport h that either depart at the same time

or have the same cost.

Corollary 1. After eliminating the dominated flight itineraries, there are no two flight

itineraries such that r, r
′ ∈ Rh, r 6= r′ in f (h, i, t) with Qh

r′ = Qh
r or F h

ir′ = F h
ir .

Theorem 1 characterizes the airport delivery cost function after eliminating the domi-

nated itineraries.
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Theorem 1. Airport delivery cost function f (h, i, t) based on non-dominated flight itineraries

is a non-decreasing step function with discontinuities at every Qh
r ∀r ∈ Rh.

Proof. Proof Let us first consider single flight itinerary case where f (h, i, t) = F h
ir, ∀t ≤

Qh
r and F h

i0 otherwise. Since F h
i0 > F h

ir, the f (h, i, t) is a step-function, which is non-

decreasing and has a single discontinuity at Qh
r . In the case of more than one flight

itinerary, let us consider any two itineraries r, r′ ∈ Rh. From Lemma 1 and Corollary

1, we have Qh
r′ < Qh

r and F h
ir′ < F h

ir. Therefore, for any two delivery times t1 and t2

where t1 < t2, we have f (h, i, t1) ≤ f (h, i, t2). In this case, f (h, i, t) is a non-decreasing

step-function with discontinuities at Qh
r and Qh

r′ . The case for more than two itineraries

follows from the induction. Thus, the airport delivery cost function is a non-decreasing

step-function with discontinuities at the starting times of the non-dominated itineraries.

�

Figure 1 illustrates a typical airport delivery cost function at airport h for two customers i, j ∈
C. There are two flight itinerary options available r = 1 and 2. While customer i can use

both r = 1 and 2, customer j can only use the flight itinerary r = 1 and its load cannot be

shipped by itinerary r = 2, e.g., destination of itinerary r = 2 is different than the customer

j’s destination. Note that airport delivery after Qh
2 for customer i (Qh

1 for customer j) will

result in the penalty cost of F h
i0 (F h

j0 for customer j).

 

 

 

 

 

 

Figure 1: Illustrative airport h delivery cost function for customers i, j ∈ C; customer i has
two flight itinerary options (left) and customer j has a single flight itinerary option (right).

Given the time-independent and deterministic edge travel times, we can infer the follow-

ing two corollaries from Theorem 1.

Corollary 2. Waiting at any node or delaying any airport delivery is suboptimal for ATD-

PDP.

14



Corollary 3. All used vehicles start at their earliest time from the depot.

3.2. Graph Transformation

In ATD-PDP, each airport can be visited multiple times by a vehicle to deliver loads

from different customers. Consequently, a feasible solution may not be a Hamiltonian cycle.

Hence, in modeling the ATD-PDP, we need to keep track of the order of these airport visits

for each vehicle by introducing additional variables. Moreover, another set of additional

variables is needed to handle the step-function characteristic of the airport delivery cost.

To reduce the complexity of the ATD-PDP’s formulation and eliminate the need for these

additional variables, we perform a graph transformation of the original network graph Go =

(Vo, Eo).

We now describe important properties of the optimal solutions of ATD-PDP used in

the graph transformation. The first property relates to preemption, which is the act of

temporarily leaving the previously picked up load at a location that is not its destination

for retrieving it for delivery at a later time.

Lemma 2. There is an optimal solution for ATD-PDP that is non-dominated by a solution

with preemption.

Proof. Proof First, vehicles have no capacity restrictions to motivate preemptive solutions.

In addition, a preemptive solution potentially prolongs deliveries by introducing additional

node visits, shown to be suboptimal in Corollary 2. For any solution with preemption,

we can identify a similar solution without preemption where the return visit for picking

up the dropped load is eliminated while the remainder of the decisions remains the same.

Since this elimination does not increase the airport arrival time, then, from Theorem 1, the

non-preemptive solution has same or better objective function than that of the preemptive

solution. �

Corollary 4. In ATD-PDP, there is an optimal solution where all customer nodes are visited

at most once.

Based on the above corollary, we can restrict the visit of each customer to at most once.

The airport nodes, in contrast, can be visited more than once by each vehicle. However, the

following theorem establishes that each vehicle visits an airport only once for each itinerary.

Theorem 2. There exists an optimal solution of ATD-PDP where each vehicle delivers

customers’ load to an airport for each flight itinerary only once.
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Proof. Proof Consider an optimal solution in which a set of customers (S) are assigned to a

given flight itinerary r′ at airport h. Assume that these customers are delivered to the airport

by one vehicle but in two visits at times t1 and t2 consecutively, where t1 < t2. Clearly,

t1 < t2 ≤ Qh
r′ . Let us denote the set of delivered customers at each visit as two distinctive

and non-empty sets of S1 and S2 respectively; i.e., S1 ∪ S2. To prove the theorem it is

sufficient to show that moving all the customers in set S1 to set S2 will results in a feasible

solution with the objective value the same as the optimal objective value. First, since set

S2 is not empty and vehicles are uncapacitated, the proposed solution is feasible. Moreover,

since the same itinerary is used the objective value is the same as the original optimal value.

In other words, although the vehicle may still visit the airport at time t1 for other itineraries,

since S1 is empty in the proposed solution, itinerary r′ is used only once in the second visit.

�

Theorem 2 states that we can restrict the solution of ATD-PDP to those solutions where

each flight itinerary requires at most one visit to the airport. The following corollary es-

tablishes that we only need to consider visits to an airport h equal to the number of flight

itineraries ∀r ∈ Rh plus an additional visit for the recourse flight r0 /∈ Rh.

Corollary 5. In ATD-PDP, there is an optimal solution where any airport h is visited, at

most, |Rh|+ 1 times.

We use this property to perform the graph transformation. In our graph transformation

scheme, we partition each airport node h into |Rh|+1 nodes, each node representing a single

flight itinerary. In the remainder, we refer to these nodes as flight nodes.

Let G = (V,E) be the transformed graph of the original graph Go = (Vo, Eo). In

this transformation, each airport node h ∈ H is replaced by |Rh| + 1 flight nodes, |Rh|
nodes each corresponding to a flight itinerary plus another node for the recourse flight.

Consequently, the airport set H is replaced with a new set of flight nodes r ∈ R, where |R| =∑
h∈H |Rh|+ |H|. The geographical locations of the flight nodes are identical to that of their

respective airport nodes. Then, we have V = {d} ∪ C ∪ R. The cost of assigning flight

itinerary r ∈ Rh to customer i (F h
ir) is replaced with the delivery cost (Fir) to flight node

r ∈ R. Note that we are using the same index r for itineraries and flight nodes. Further, we

introduce a hard upper time window Qr for flight node r, i.e., it cannot be visited after Qr.

The flight node for recourse flights has the delivery cost of Fi0 and upper time window of

infinity.

As for the edges, we replace the airport ∀h ∈ H edges ∀ (j, h) ∈ Eo, ∀j ∈ Vo\ {h} with
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new flight node edges (j, r) ∈, ∀j ∈ V, ∀r ∈ Rh and assign edge travel times tjr = tjh and

costs cjr = cjh. Similar procedure is repeated for the outgoing links. In addition, a new set

of links interconnecting the flight nodes are added with zero travel time and cost for the

flight nodes generated from the same airport. The transformed graph G = (V,E) inherits

all the edges connecting depot to customers and customers to customers.

While a feasible solution in the original graph may not be a Hamiltonian cycle, the

same solution is represented with one or more Hamiltonian cycles on the sub-graphs of the

transformed graph. Indeed, any solution in graph G can be easily transferred back to a

solution in original graph Go by collapsing the flight nodes back to their original airport

node. Figure 2 illustrates the graph transformation on a network with 5 customers and 2

airports, each with 2 flights. In the feasible solution illustrated in Figure 2a, loads from

customer(s) {1},{2, 3, 4}, and {5} are assigned to flight itineraries r2 at airport H1, r3 at

airport H2, and r4 at airport H2, respectively. While vehicle 1’s trip is a Hamiltonian cycle,

vehicle 2 visits the airport H2 twice. In the transformed graph in Figure 2b, this solution

is represented in a single Hamiltonian cycle as vehicle 1 visiting flight node r1 and vehicle

2 visiting flight node r3 and then subsequently r4. In Figure 2b, the shaded flight nodes

correspond to flight nodes for recourse flights.

 

 

       

 (a) (b) 

Figure 2: Illustration of a sample feasible solution in the original (a) and transformed (b)
graphs.

The graph transformation eliminates the need for additional variables for tracking the

order of vehicle visits to airports as well as handling the step-function characteristic of the

time dependent delivery cost. This transformation further reduces the complexity of the

ATD-PDP’s formulation. In particular, it allows network preprocessing and introducing
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valid inequalities to strengthen the formulation as described in Section 3.4.

3.3. Formulation

The objective of the ATD-PDP is to pick up all customer loads, assign loads to flight

itineraries and deliver loads to the airports on time while minimizing the total cost. We

now formulate the ATD-PDP using the transformed graph as a mixed-integer programming

model. Let xkij denote the binary decision variable indicating whether vehicle k travels from

node i directly to node j. Let ykir be the binary decision variable indicating whether the

load of customer i is shipped by flight itinerary r ∈ R with vehicle k ∈ K. The arrival time

of the vehicle k at node j ∈ V is denoted as akj . For the depot, we set akd = θopd for any

vehicle k ∈ K. The formulation of the ATD-PDP, labeled (MP), is as follows.

(MP) z∗MP=min
x,y

∑
k∈K

∑
i∈V

∑
j∈V \{i}

cijx
k
ij+
∑
i∈C

∑
r∈R

Firy
k
ir

 (1)

Subject to

∑
k∈K

∑
r∈R

ykir = 1 ∀i ∈ C (2)

∑
j∈V \{i}

xkij ≤ 1 ∀i ∈ V , ∀k ∈ K (3)

∑
i∈V \{j}

xkij+
∑

i∈V \{j}

xkji = 0 ∀j ∈ V , ∀k ∈ K (4)

(
xkij − 1

)
M + aki + tij ≤ akj ∀i ∈ V , ∀j ∈ V \{d, i}, ∀k ∈ K (5)

aki ≥ θopd ∀i ∈ C, ∀k ∈ K (6)

akr ≤ min
{
θcld−trd, Qr

}
∀r ∈ R, ∀k ∈ K (7)(

ykir − 1
)
M + aki + tir ≤ akr ∀i ∈ C, ∀r ∈ R, ∀k ∈ K (8)

2ykir ≤
∑

j∈V \{i}

xkij+
∑

j∈V \{r}

xkrj ∀i ∈ C, ∀r ∈ R, ∀k ∈ K (9)

ykir, x
k
ij ∈ {0, 1} aki , a

k
r ≥ 0 ∀i, j ∈ V |i 6= j, ∀r ∈ R, ∀k ∈ K (10)

The objective (1) minimizes the total cost of delivery including flight itineraries, service

level and road travel cost. Constraint set (2) ensures that every customer’s load is assigned
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to a flight itinerary. Constraint set (3) guarantees that each node is visited at most once

by each vehicle. Constraint set (4) is the flow conservation at each node for each vehicle.

Constraint sets (5) and (6) calculate the arrival time at every node while also preventing

sub-tours. Constraint set (7) prohibits visiting a flight node after the starting time of the

flight itinerary while ensuring that the vehicle can also return to the depot before the depot’s

closing time. Constraint set (8) guarantees that a customer load pickup precedes its delivery

to the selected flight node. Constraint set (9) ensures that both pickup and delivery of a

customer load is performed by a same vehicle. Constant M is a big number corresponding

to arrival times and can be calculated as summation of all the links’ travel times.

For brevity, let Jk (x, y) denote the objective function for vehicle k and J (x, y) denote

objective for all vehicles.

Jk (x, y) =
∑
i∈V

∑
j∈V \{i}

cijx
k
ij+
∑
i∈C

∑
r∈R

Firy
k
ir ∀k ∈ K (11)

J (x, y) =
∑
k∈K

Jk (x, y) (12)

3.4. Network Preprocessing and Valid Inequalities

We strengthen the formulation (MP) by network preprocessing and introducing valid

inequalities. First preprocessing step is to tighten the upper and lower bounds on the node

arrival times. For a customer node, the earliest arrival time (aki ) is attained via a direct

travel from the depot,

aki ≥ aki = θopd + tdi ∀i ∈ C, ∀k ∈ K, (13)

and, the latest arrival time (aki ) is the latest time that allows a vehicle to pick up the

customer load, deliver it to a flight node, and return to the depot before the closing time,

aki ≤ aki = max
r∈R

{
min

(
Qr, θ

cl
d − trd

)
− tir

}
∀i ∈ C, ∀k ∈ K. (14)

For a flight node, the earliest arrival time (akr) is attained by the shortest travel from the

depot after visiting a customer,

akr ≥ akr = θopd + min
i∈C

(tdi + tir) ∀r ∈ R, ∀k ∈ K. (15)
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The latest arrival time to a flight node (akr) is already included in (MP) as the constraint set

(7). Next preprocessing step is determining the lowest value for M in constraints (5) and

(8). In particular, we replace M with edge specific Mij,

Mij = aki + tij ∀i ∈ V , ∀j ∈ V \{d, i}, ∀k ∈ K. (16)

The final preprocessing step is the elimination of the inadmissible edges that can never be

traversed in a feasible solution. We remove edges (i, d) ∀i ∈ C since vehicles must return

to the depot empty. The edges (d, r) ∀r ∈ R are eliminated since vehicles leave the depot

empty. Lastly, we remove any edge (i, j) ∀i, j ∈ V if aki + tij > akj , i.e., the vehicle cannot

traverse an edge if it cannot arrive its destination before the latest allowed arrival time.

We tighten the constraints set (5) by using the following lifting scheme from Desrochers

and Laporte (1991) by taking the reverse arcs into account.

xkji (M − tij − tji) +
(
xkij − 1

)
M + aki + tij ≤ akj ∀i, j 6= i ∈ V \{d},∀k ∈ K (17)

In addition, we introduce the following cut set that ensures that a vehicle visits a customer

only if it delivers the customer’s load to a flight node.∑
j∈V \{i}

xkij =
∑
r∈R

ykir ∀i ∈ C, ∀k ∈ K (18)

4. Methodology

First, we briefly present the standard Lagrangian Decomposition approach. Next, we

introduce the Successive Subproblem Solution (SSS) method for solving ATD-PDP problem

using the (MP) formulation with preprocessing and valid inequalities described in Section

3.4. We also provide convergence results and a method to estimate the bound used in

subgradient optimization to improve the convergence to quality primal feasible solutions.

4.1. Standard Lagrangian Decomposition Approach

The standard Lagrangian Decomposition (LD) approach is commonly used for formula-

tions composed of two or more intertwined subproblems that are easier to solve indepen-

dently through specialized algorithms. In fact, the LD approach is commonly used for the

vehicle routing problems (Kohl and Madsen, 1997). The (MP) formulation is a candidate

for LD approach since constraints (2) are the only coupling constraints for vehicles and the

20



rest of the constraints and the objective is separable by vehicle. Hence, by relaxing the con-

straints (2) through Lagrangian relaxation, (MP) can be decomposed to |K| subproblems,

each corresponding to a single vehicle.

The Lagrangian relaxation of MP with respect to constraints (2) results in the following

relaxed problem (LR),

(LR) Φ(λ) = min
(x,y)∈Ω

[∑
k∈K

Jk (x, y)+
∑
i∈C

λi

(
1−
∑
k∈K

∑
r∈R

ykir

)]
, (19)

where λ =
(
λ1, · · · , λ|C|

)
∈ <|C|is the vector of Lagrangian multipliers associated with

constraints (2). The set denotes all feasible solutions of the (LR). Then, the Lagrangian

Dual (LD) problem maximizes the (LR) solution, which is a lower bound on z∗MP .

(LD) Φ∗LD=max
λ

(Φ(λ)). (20)

The set splits into |K| disjoint subsets, i.e. Ω = Ω1×Ω2×· · ·×Ω|K|, where each Ωk is defined

by constraints (3)−(10) for a given k ∈ K. Further, the objective of (LD) is additive, thus

leading to the following decomposition,

Φ(λ) =
∑
k∈K

Φk (λ)+
∑
i∈C

λi. (21)

where Φk (λ)= min(x,y)∈Ωk
Lk (λ, x, y) and Lk (λ, x, y) =Jk (x, y)−

∑
i∈C
∑

r∈Rλiy
k
ir is the La-

grangian function of the kth subproblem. To solve (LD), we solve the primal subproblem

Φk (λ) for each vehicle k at the low-level and update the Lagrangian multipliers at the

high-level, e.g., using subgradient optimization (Conejo et al., 2006; Fisher, 2004; Geof-

frion, 1974). The optimization at both levels is performed iteratively until the dual solution

converges.

However, since the vehicles are homogeneous, the subproblems Φk (λ) are identical; i.e.

Ω1 = Ω2 = · · · = Ω|K|. Hence, all subproblems have the same optimal solution with identical

objective value. Accordingly, solving (LD) is equivalent to solving the following,

|K|max
λ

(
min

(x,y)∈Ωk

Lk (λ, x, y)

)
+
∑
i∈C

λi (22)

where k ∈ K is any one of the subproblems. This case of identical subproblems presents

challenges in the solution process. In particular with discrete decisions, it leads to oscillating
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dual solutions, affecting the convergence rate. Further, the solutions converged are primal

infeasible and provide a lower bound on z∗MP that can be weak. Lastly, the primal infeasibility

of the solutions requires integration with an exact (heuristic) method such as branch-and-

bound (Lagrangian heuristic) to obtain optimal (good quality) solutions (Kohl and Madsen,

1997).

4.2. Successive Subproblem Solving Method

We adapt the Successive Subproblem Solving (SSS) method to avoid the challenges

associated with the standard Lagrangian Decomposition method due to the identical sub-

problems. This approach is introduced by Zhai et al. (2002) to solve the unit commitment

problem in electrical power generator scheduling. The SSS approach extends and improves

over the standard Lagrangian Decomposition method by addressing the dual solution oscil-

lation. However, it does not guarantee either the primal feasibility or the quality of feasible

solutions. We address these issues in Section 4.4 by developing a modified variable target

value method for subgradient optimization for SSS approach.

In SSS, we introduce an absolute penalty term that helps to reduce the oscillation and

constraint violations more rapidly. Accordingly, the Lagrangian function is revised to the

following augmented form,

L̂ (ω, λ, x, y) =
∑
k∈K

Jk (x, y)+
∑
i∈C

λi

(
1−
∑
k∈K

∑
r∈R

ykir

)

+ω
∑
i∈C

∣∣∣∣∣1−∑
k∈K

∑
r∈R

ykir

∣∣∣∣∣, (23)

where ω > 0 is the penalty parameter. The revised dual problem (PS) and dual function

Φ(λ) are then expressed as,

(PS) Φ∗PS (ω) =max
λ

Φ̂(ω, λ) = max
λ

(
min

(x,y)∈Ω
L̂ (ω, λ, x, y)

)
. (24)

The Φ∗PS (ω) is the optimum dual solution with penalty weight ω. The optimum solution

(PS) can be either a feasible or infeasible solution to the original problem (MP). If the solu-

tion is feasible, it can be shown that it is also optimum, i.e., no duality gap Φ∗PS (ω) =z∗MP .

Following theorem establishes that the Φ∗PS (ω) is a lower bound on the primal optimum

solution z∗MP .

Theorem 3. For any ω and λ, Φ̂(ω, λ) ≤Φ∗PS (ω) ≤ z∗MP ≤ J (x, y).
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Proof. Proof By definition from (1) and (24), we have z∗MP ≤ J (x, y) and Φ̂(ω, λ) ≤Φ∗PS (ω),

respectively. Let (x∗, y∗) be the primal optimum solution to problem (MP) and λ∗ denote

the optimum multipliers. The primal optimum solution is feasible, thus, satisfies constraint

set (2). Accordingly, we have

z∗MP=
∑
k∈K

Jk (x∗, y∗)+
∑
i∈C

λ∗i

(
1−
∑
k∈K

∑
r∈R

yk∗ir

)
+ω
∑
i∈C

∣∣∣∣∣1−∑
k∈K

∑
r∈R

yk∗ir

∣∣∣∣∣ = L̂ (ω, λ∗, x∗, y∗) .

From the definition (24),

Φ∗PS (ω) = min
(x,y)∈Ω

L̂ (ω, λ∗, x, y) ≤ L̂ (ω, λ∗, x∗, y∗) =z∗MP . �

Revised Lagrangian function (23) cannot be decomposed into k subproblems due to the

penalty term. Hence, to calculate the subgradient of Φ̂(ω, λ) with respect to λ, we now need

to solve the integrated low-level problem min(x,y)∈Ω L̂ (ω, λ, x, y) , which is computationally

inefficient. Revised Lagrangian function in (23), however, can be reformulated as an additive

function. Let us redefine the Lagrangian function for kth vehicle as follows:

L̂k (ω, λ, x, y) =Jk (x, y)−
∑
i∈C

∑
r∈R

λiy
k
ir+ω

∑
i∈C

∣∣∣∣∣qk (i)−
∑
r∈R

ykir

∣∣∣∣∣ , (25)

where,

qk (i) = 1−
∑
s∈K
s 6=k

∑
r∈R

ysir . (26)

It can be verified that the Lagrangian function (23) can be expressed in terms of L̂k (ω, λ, x, y)

and qk (i) as follows:

L̂ (ω, λ, x, y) =L̂k (ω, λ, x, y) +
∑
s∈K
s 6=k

Js (x, y)+
∑
i∈C

λiqk (i) . (27)

Since (27) is additive, we can now solve the (PS) in parts, e.g., for each vehicle. The

subproblem for vehicle k is then defined as follows:

(PSk) Φ̂k (λ) = min
(x,y)∈Ωk

L̂k (ω, λ, x, y) . (28)
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The variable qk (i) is fixed for the kth subproblem. The qk (i) links subproblem k to other

subproblems by conveying the information about customer i’s assignment to other vehicles.

Hence, the solutions of the subproblems are likely to be different from each other, thus

alleviating the issues associated with identical subproblems.

In solving (PS), the SSS method solves the vehicle subproblems one at a time, while

calculating the qk (i) ∀i ∈ C using the solution from other vehicles. The SSS method up-

dates the Lagrangian multipliers after solving any of the subproblems. Note that this is

needed since solving subproblems one after another using the same multipliers improves the

L̂ (ω, λ, x, y) at a decreasing rate because the subgradient directions are not being updated.

In SSS, the Lagrangian multipliers are updated using the surrogate subgradient (SSG) ap-

proach introduced by Zhao et al. (1999). The standard subgradient approach requires

solving all subproblems to obtain the subgradient direction (Geoffrion, 1974; Fisher, 2004).

In the SSG approach, however, the solution to only one of the subproblems is sufficient to

obtain a proper surrogate subgradient direction. Let gji denote the surrogate subgradient

for customer i at any iteration j and is calculated as,

gji= 1−
∑
k∈K

∑
r∈R

(
ykir
)j ∀i ∈ C. (29)

We first introduce the notation used in the SSS method and then present its algorithmic

steps.

Notation:

(xj, yj)k: solution of kth subproblem at iteration j

(xj, yj): solution at iteration j

λ̂0 : initial Lagrangian multipliers, i.e., λ̂0 =
{
λ̂0
i ,∀i ∈ C

}
λj: Lagrangian multipliers at iteration j, i.e., λj =

{
λji ,∀i ∈ C

}
gj: surrogate subgradients at iteration j, i.e., gj =

{∑
i∈C g

j
i ,∀i ∈ C

}
δj: step-size at iteration j

Ljω: Lagrangian function value at iteration j with penalty ω, i.e., Ljω = L̂ (ω, λj, xj, yj)

β: step-size update parameter, 0 < β < 1

α: initialization factor for Lagrangian multipliers

ε: threshold for Lagrangian multiplier convergence criteria, ε> 0

SSS Procedure:

Initialization.
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I.1. Given λ̂0, e.g., λ̂0 = 0, solve (LD) using (22) and obtain (x0, y0)

I.2. Calculate,

λ0
i=α

(
1−
∑
k∈K

∑
r∈R

(
ykir
)0

)
∀i ∈ C, (30)

where, 0 < α<
(

Φ∗PS (ω)−L̂ (ω, 0, x0, y0)
)
/
∑

i∈C

∥∥∥1−
∑

k∈K
∑

r∈R
(
ykir
)0
∥∥∥2

I.3. Calculate L0
ω = L̂ (ω, λ0, x0, y0) and update Lagrangian multipliers:

λ1= λ0+δ0g0 ,

where 0 < δ0=β(Φ∗PS (ω)− L0
ω)/‖g0‖2

and 0 < β < 1. Set j = 1.

Step 1. Subproblem Solution:

1.1. For k = 1, 2, . . . , |K|, Repeat:

1.1.a. Solve subproblem (PSk) in (28) by setting

(
xj, yj

)
s

=
(
xj−1, yj−1

)
s

for s ∈ K s 6= k

to obtain (xj, yj)k.

1.1.b. If the following improvement condition is satisfied,

Ljω=L̂
(
ω, λj, xj, yj

)
<L̂

(
ω, λj, xj−1, yj−1

)
, (31)

where (xj, yj) =(xj, yj)k ∪ {(xj−1, yj−1)s|s ∈ K, s 6= k},
then go to Step 2, otherwise continue with the next k.

1.2. Set (xj, yj) = (xj−1, yj−1).

Step 2. Subgradient Optimization:

2.1. Update Lagrangian multipliers :

λj+1= λj+δjgj ,

where 0 < δj=β(Φ∗PS− Ljω)/‖gj‖2
and 0 < β < 1.

Step 3. Check the stopping criteria.

3.1. If
∥∥λj+1−λj

∥∥ ≤ ε, then go to Step 4; otherwise set j = j + 1 and return to Step 1.

Step 4. Terminate with solution (xj, yj).

The SSS method is initialized by solving (LD) to obtain initial solutions to estimate the

starting values for Lagrangian multipliers. The bounding of α in the initialization ensures
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that L0
ω = L̂ (ω, λ0, x0, y0) < Φ∗PS (ω). This inequality is important for convergence analysis

as explained in the next section. The subproblems in Step 1 are sequentially solved until

the improvement condition in (31) is attained. In each subproblem solution, the previous

iteration’s solutions are used to calculate qk (i) ∀i ∈ C. When none of the vehicle k’s

subproblem solution satisfies (31), then the previous iteration’s solution is maintained. The

multipliers are updated using the surrogate gradient in Step 2.1. The SSS method terminates

when multipliers converge.

The SSS method requires Φ∗PS (ω). This value, however, is generally unknown in advance

and needs to be estimated. A poor underestimation may result in convergence to a primal

infeasible solution with large duality gap (see Theorem 4). In the standard Lagrangian

method, the value used in place of Φ∗PS (ω) is an overestimation of z∗MP , which affects the

convergence rate. However, the solutions converged are either primal infeasible or optimal

(Held et al., 1974). In comparison, SSS method, using an overestimation of Φ∗PS (ω) , may

converge to a primal feasible but not optimal solution. Hence, SSS differs from the standard

Lagrangian method, as it may converge to a suboptimal primal feasible solution without a

feasibility recovery heuristic. The reason for this is that the SSS minimizes the augmented

Lagrangian relaxation in (25) by solving decomposed subproblems in Step 1. The bound

estimate of Φ∗PS (ω) in SSS is therefore critical affecting both the convergence rate and the

solutions converged, i.e., primal feasible or infeasible. We present the bound estimation

procedure in Section 4.2.2.

4.2.1. Convergence Analysis:

In this section, we provide convergence results for SSS method with subgradient optimization

using Φ∗PS (ω). The following theorem establishes that the Lagrangian function value at each

iteration of SSS underestimates the optimal solution to the (PS).

Theorem 4. (Solution Bounding) For a given ω, at each iteration i, Ljω < Φ∗PS (ω).

Proof. Proof For j = 0, the condition on α suffices. In the case of j ≥ 1, from (31) we have,

Ljω=L̂
(
ω, λj, xj, yj

)
≤ L̂

(
ω, λj, xj−1, yj−1

)
.
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Further,

L̂
(
ω, λj, xj−1, yj−1

)
= L̂

(
ω, λj−1, xj−1, yj−1

)
+L̂

(
ω, λj, xj−1, yj−1

)
−L̂

(
ω, λj−1, xj−1, yj−1

)
= Lj−1

ω +
∑
i∈C

(
λji−λ

j−1
i

)(
1−
∑
k∈K

∑
r∈R

ykir

)
=Lj−1

ω + δj−1
∥∥gj−1

∥∥2
.

From the definition of δj in Step 3 of SSS procedure we have, Ljω ≤ Lj−1
ω +β (Φ∗PS (ω)−Lj−1

ω ) .

Since β < 1, we obtain, Ljω < Lj−1
ω +Φ∗PS (ω)−Lj−1

ω ≤ Φ∗PS (ω) . �

The following lemma states that the search direction of the Lagrangian multipliers in

any iteration is always a proper direction, i.e., (λ∗ − λj) gj > 0.

Lemma 3. (Direction). Let λ∗ be the optimal multiplier vector, then Φ∗PS (ω) − Ljω ≤
(λ∗ − λj) gj, ∀j.

Proof. Proof Based on (23) and (24), we have

Φ∗PS (ω)= Φ̂(ω, λ∗) = L̂ (ω, λ∗, x∗, y∗) ≤ L̂
(
ω, λ∗, xj, yj

)
=Ljω+L̂

(
ω, λ∗, xj, yj

)
−Ljω

= Ljω+
(
λ∗ − λj

)
gj .

Last step follows from the definition of gj in (29) and Lagrangian function L̂ (ω, λ, x, y)

in (23). From Theorem 4, we have Φ∗PS (ω) − Ljω> 0, thus the theorem’s result follows.

�

The convergence of the Lagrangian multipliers is established by the following theorem.

Theorem 5. (Convergence) In the SSS algorithm, the Lagrangian multipliers are con-

verging; that is, ∥∥λ∗ − λj+1
∥∥2
<
∥∥λ∗ − λj∥∥2 ∀j,

where λ∗ is the optimal multiplier vector.

Proof. Proof From (32) we have

∥∥λ∗ − λj+1
∥∥2

=
∥∥λ∗ − λj−δjgj∥∥2

=
∥∥λ∗ − λj∥∥2

+
(
δj
)2∥∥gj∥∥2−2δj

(
λ∗ − λj

)
gj.
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Using result from Lemma 3, we have,

∥∥λ∗ − λj+1
∥∥2 ≤

∥∥λ∗ − λj∥∥2
+
(
δj
)2∥∥gj∥∥2−2δj

(
Φ∗PS (ω)− Ljω

)
.

Then, from the definition of δj in Step 2 of SSS procedure,

∥∥λ∗ − λj+1
∥∥2 ≤

∥∥λ∗ − λj∥∥2−δj
(
Φ∗PS (ω)− Ljω

)
,

and using the result of Theorem 4, we obtain ‖λ∗ − λj+1‖2 ≤ ‖λ∗ − λj‖2
. �

Increasing the penalty parameter improves the quality of the solution converged as es-

tablished by the following theorem.

Theorem 6. For any two penalty weight ω1 and ω2, where 0 < ω1 < ω2,

Φ̂(ω1, λ) ≤ Φ̂(ω2, λ) ≤ Φ∗PS (ω2) ≤ z∗MP .

Proof. Proof From (23), we have Lj
ω2
−Lj

ω1
= (ω2−ω1)

∣∣∑
i∈C g

j
i

∣∣ ≥ 0.Thus, Ljω2
≥ Ljω1

. Sub-

sequently from (24), we have,

min Ljω2
≥ min Ljω1

,

max Φ̂(ω2, λ) ≥ max Φ̂(ω1, λ) ,

Φ∗PS (ω2) ≥ Φ∗PS (ω1).

From Theorem 5, we already have Φ∗PS (ω2) ≤ z∗MP . �

While Theorem 6 states that the solution quality of SSS improves with penalty parameter,

we note that choosing ω very large may cause ill-conditioning and numerical instability.

4.2.2. Bound Estimation: Variable Target Value Method

The SSS procedure uses an estimate of Φ∗PS (ω) for the surrogate subgradient optimization.

Rather than using a static estimate, we dynamically change this estimate in order to obtain

a good quality primal feasible solution. Specifically, we modify the variable target value

method (VTVM) presented in Lim and Sherali (2006) and incorporate backtracking to

improve the target value estimation. Since the SSS method can converge to primary feasible
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but suboptimal solution, we integrated a backtracking phase within the VTVM to improve

the quality of the feasible solution.

We modify the SSS method by replacing Φ∗PS (ω) with a dynamically adjusted estimate

Φj
PS (target value). Analogous to Theorem 3, it can be shown that Ljω < Φj

PS holds true

for each iteration j. In choosing the estimate Φj
PS, the goal is to approximate z∗MP as close

as possible. In standard VTVM method, the target value Φj
PS is increased as long as the

convergence rate is satisfactory and then decreased to close in on an optimal solution. In

our adaptation, we increase the target value Φj
PS with a controlled rate until we find a

primal feasible solution. Finding a primal feasible solution, as explained in Section 4.2.1,

indicates that the target value is an overestimation of Φ∗PS (ω). This primal feasible solution,

however, maybe a low quality suboptimal solution. Therefore, with a backtracking phase,

we revise the latest target value to obtain a better primal feasible solution. Specifically,

after encountering with a primal feasible solution, we return back to a past iteration where

the target value underestimates the current solution’s objective value. Then, the modified

SSS repeats the iteration with a smaller step size in an effort to find an improved primal

feasible solution.

We first provide the notation used in VTVM with backtracking and then present the

modified steps of the SSS procedure. Next, we briefly discuss the convergence behavior of

the SSS with backtracking. Note that we replace Φ∗PS (ω) with Φj
PS in the remainder steps

of the SSS procedure.

Notation for SSS with Backtracking VTVM:

Φj
PS: target value at iteration j

Φ
j

PS: upper bound on the optimal solution at iteration j

ΦPS: lower bound on the optimal solution value

(x∗, y∗) : an optimal solution to (MP)

4j: accumulated improvements since the last Lagrangian function improvement until the

beginning of iteration j

εj: acceptance tolerance that the current incumbent value Ljω is close to the target value

Φj
PS in iteration j

σ: acceptance interval parameter

ηj: fraction of cumulative improvement that is used to increase the target value in iteration

j

εGAP: optimality gap threshold

Modified Steps of the SSS Procedure with Backtracking VTVM:
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Initialization. Execute Steps I.1, I.2, I.3 of the original SSS procedure, and,

I.4. Set Φj=1
PS = ΦPS, Φ

j=1

PS = +∞, ηj=1= 0.35, σ= 0.2,4j=1= 0, and εj=1=σ
(
Φj=1
PS −Lj=0

ω

)
.

Step 1. Subproblem Solution & Backtracking:

1.1. For k = 1, 2, . . . , |K|, Repeat:

1.1.a. Solve subproblem (PSk) in (28) by setting (xj, yj)s = (xj−1, yj−1)s for s ∈ K, s 6=
k

and obtain (xj, yj)k. Denote (xj, yj) =(xj, yj)k ∪ {(xj−1, yj−1)s|s ∈ K, s 6= k}.
1.1.b. If (xj, yj) is primal feasible, then

i. Set (x∗, y∗) = (xj, yj),

ii. Set Φ
j

PS = Ljω = J (xj, yj) ,

iii. Set algorithm parameters, variables, and solutions back to iteration v, i.e.,

where v = max
{
l : Φl

PS< Φ
j

PS = Ljω

}
,

iv. Set j := v,

v. Set β = β/2 and repeat iteration j with updated Lagrange multipliers λj =

λj−1+δj−1gj−1.

1.1.c. If the following improvement condition is satisfied,

Ljω=L̂
(
ω, λj, xj, yj

)
<L̂

(
ω, λj, xj−1, yj−1

)
,

where (xj, yj) =(xj, yj)k ∪ {(xj−1, yj−1)s|s ∈ K, s 6= k},
then go to Step 2, otherwise continue with the next k.

1.2. Set (xj, yj) = (xj−1, yj−1).

Step 2. Subgradient Optimization & VTVM:

2.1. If Ljω> Φj
PS−εj, then

2.1.a. Update the target value Φj+1
PS = min

{
Ljω+εj+ηj4j ,Φ

j

PS

}
,

2.1.b. Update the threshold εj+1=σ
(
Φj+1
PS − Ljω

)
,

2.1.c. Reset 4j= 0,

2.1.d. Update ηj+1=min {2ηj, 1} ,
otherwise set Φj+1

PS = Φj
PS, Φ

j+1

PS = Φ
j

PS, ηj+1 = ηj and εj+1 = εj.

2.2. Update 4j+1=4j+ ( Ljω− Lj−1
ω )

2.3. Update Lagrangian multipliers:

λj+1= λj+δjgj,

where 0 < δj=β
(
Φj
PS− Ljω

)
/‖gj‖2

and 0 < β < 1.
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Step 3. Check the stopping criteria:

3.1. If
(

Φ
j

PS − Ljω

)
≤ εGAP or

∥∥λj+1−λj
∥∥ ≤ ε, then terminate with Step 4;

otherwise set j = j + 1 and go to Step 1.

Step 4. Terminate with (x∗, y∗).

The SSS with backtracking VTVM initializes the target value Φj
PS with an underestimation

ΦPS of the dual optimal value, e.g., linear programming relaxation. From Lemma 3, it can be

shown that the Lagrangian multipliers provide a proper direction and thus the dual solution

Ljω is non-decreasing. When the dual solution is primal feasible, we perform the backtracking

phase in Step 1.1b. This backtracking helps improve the quality of the subsequent feasible

solutions by reverting to the an iteration v satisfying Φv
PS<L

j
ω and repeat the iteration j with

smaller step size. As the Ljω closes in on the target value such that Ljω is within εj threshold

of Φj
PS, then Step 2.1.a updates the target value based on the accumulated improvement 4j

and Φ
j

PS. This update guarantees that the dual solution and the target value is separated

by at least εj while ensuring that the target value does not exceed the upper bound. The

threshold εj is updated in Step 2.1.b.

Choosing large values for σ increases εj. With higher εj values, we are more likely to

consider that the Ljω is close to the target value and thus update the target value more

frequently and with larger increments (Step 2.1.a). This can result in poor feasible solutions

as the upper bound Φ
j

PS might not have decreased sufficiently. In contrast, lower σ values

reduce the convergence rate. The required ranges for acceptance interval parameter and

fraction of cumulative improvement are σ ∈ (0, 1/3] and ηj ∈ (0, 1] (Lim and Sherali, 2006).

The algorithm terminates and returns the best primal feasible solution when the gap between

the best feasible solution and the Lagrangian dual function value falls below the optimality

gap threshold (εGAP).

5. Computational Experiments

We report on the results of two computational experiments. First, we investigate the com-

putational and solution quality performance of the proposed approach for solving the ATD-

PDP. Next, we present the results of implementing AAAP in a real-world case study using

the Southern California region discussed in Hall (2002). The SSS with backtracking VTVM

is programmed in Matlab R2008a and integer programs are solved with CPLEX 12.1. All

experimental runs are conducted on a PC with Intel(R) Core 2 CPU, 1.66 GHz processor and

1 GB RAM running on Windows XP Professional. In the following section, we report on the
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computational results of the two variants of the SSS method, namely SSS with backtracking

VTVM (SSS-B-VTVM) and VTVM based SSS without backtracking (SSS-VTVM).

5.1. Evaluation of the Solution Algorithm

We generated a set of test problems varying from small to large problem scenarios. Since the

ATD-PDP is a new problem, no benchmark datasets are available. In generating the data

sets, we adhered to the development procedure described in Solomon (1987). The problem

scenarios have one depot and one or two airports each with three flight itinerary options

for each customer. The third option represents the recourse flight itinerary option. For a

problem scenario with n = |C| customers and m = |H| airports, we first generate ( 1+m+n)

locations from a uniform distribution over the square bounded by [0, 10 (1 +m+ n)] ×
[0, 10 (1 +m+ n)]. Next, we randomly label the nodes as the depot, airports and customers

to avoid any association between the location and identity of a node. The travel time between

nodes is calculated as the Euclidean distances between them. The travel cost between two

nodes is set equal to their travel time.

For each airport h, the departure times Qh
r of flights are independent and identically

distributed according to a uniform distribution U [ϕ/|K|, θ] where |K| is the number of

available vehicles; ϕ is the heuristic solution to a TSP problem consisting of the depot

(origin), all customers and the airport (destination) and obtained through the greedy next

best routing heuristic. The cost of flight itinerary options F h
ir are independent and identically

distributed according to a uniform distribution U [a, b] where a and b are the bounds set

as 100 and 600, respectively. The flight itinerary options are sorted from cheapest to most

expensive and assigned to the flight itineraries based on the starting times such that cheaper

itineraries start earlier.

We have conducted experiments using 5, 7, 10 and 15 customer cases. For each ex-

periment scenario, we generated 10 independent instances and solve them using CPLEX,

SSS-VTVM, and SSS-B-VTVM. Since there is no prior work on ATD-PDP, we compare the

proposed methods with the CPLEX solution of (MP) as an integrated model. We restricted

the solution time to 3 hours for all methods and report the best feasible solution attained

within the time limit for each instance. In total, we have solved 300 problem instances using

both methods. We first present the results of SSS-VTVM. In this method, we terminate

the solution procedure when a primal feasible solution is found. Table 2 presents the com-

parative solution quality and computational performance results and Table 1 describes the

column headings. Table 2 optimality results are based on the gap between the best solutions

found in each method and the lower bound from CPLEX. For each problem scenario, we
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report the average, minimum, and maximum optimality gap of the methods and the com-

parison of the CPU time in terms of a ratio. The CPU time ratio metric is selected since

we report the performance across all the instances.

Description of column headings in Table 2.
|C| Number of customers

|H| Number of airports

|K| Number of vehicles

CPLEX Gap (%) Gap between the best feasible solution and lower bound of CPLEX 

SSS Gap (%) Calculated as (SSS solution - CPLEX Lower Bound)/CPLEX Lower Bound.

CPU Time Ratio The ratio of CPLEX’s CPU time to SSS’s CPU time

Hit Percentage of time that SSS or CPLEX finds an optimum solution 

Comparative performance of CPLEX and SSS.

|C| |H| |K| AveAveAveAve MinMinMinMin MaxMaxMaxMax HitHitHitHit AveAveAveAve MinMinMinMin MaxMaxMaxMax HitHitHitHit AveAveAveAve MinMinMinMin MaxMaxMaxMax AveAveAveAve MinMinMinMin MaxMaxMaxMax HitHitHitHit AveAveAveAve MinMinMinMin MaxMaxMaxMax

3333 0.0 0.0 0.0 100 1.8 0.0 5.2 40 1 0 3 0.1 0.0 0.8 70 1 0 1

4444 0.0 0.0 0.0 100 1.3 0.0 5.8 40 1 0 2 0.2 0.0 1.5 70 1 0 1

5555 0.0 0.0 0.0 100 0.7 0.0 2.1 50 1 0 3 0.3 0.0 1.8 80 1 0 2

3333 0.0 0.0 0.0 100 0.8 0.0 5.6 40 25 0 146 0.1 0.0 1.2 80 11 0 57

4444 0.0 0.0 0.0 100 1.5 0.0 8.2 50 8 0 28 0.0 0.0 0.2 90 4 0 12

5555 3.3 0.0 33.0 90 2.8 0.0 7.1 20 31 1 228 0.5 0.0 2.0 50 27 0 228

3333 0.0 0.0 0.0 100 1.5 0.0 6.2 20 10 1 28 0.8 0.0 4.0 30 9 0 28

4444 0.0 0.0 0.0 100 0.6 0.0 2.7 50 11 0 38 0.4 0.0 2.7 70 10 0 38

5555 0.0 0.0 0.0 100 1.9 0.1 5.7 0 9 1 34 0.5 0.0 1.8 30 7 0 34

3333 0.0 0.0 0.0 100 1.4 0.0 3.3 10 102 6 344 0.9 0.0 3.3 30 91 4 344

4444 1.9 0.0 14.9 80 4.2 0.0 14.9 20 54 4 346 2.9 0.0 14.9 30 50 4 346

5555 1.5 0.0 7.3 78 3.2 0.0 11.6 11 99 18 309 1.8 0.0 6.8 22 73 9 207

3333 0.2 0.0 2.3 82 2.0 0.0 6.7 18 431 7 2,205 0.8 0.0 2.3 27 239 5 966

4444 0.9 0.0 5.2 70 3.7 0.1 7.5 0 446 14 1,549 1.9 0.0 6.3 10 281 14 1,549

5555 0.7 0.0 3.2 70 4.0 0.0 6.9 0 195 0 645 1.4 0.0 4.9 0 143 0 645

3333 2.9 0.0 9.6 46 5.0 0.0 15.6 8 172 1 753 3.4 0.0 9.9 23 81 1 252

4444 9.1 1.1 34.4 0 10.8 2.8 19.5 0 234 2 748 7.9 2.3 14.6 0 120 2 255

5555 9.5 0.9 26.1 0 11.1 3.4 20.2 0 299 27 1,581 8.8 2.6 16.1 0 145 25 688

3333 4.5 0.0 35.9 23 6.7 0.3 14.1 0 520 2 1,892 5.2 0.2 14.1 0 313 2 1,382

4444 4.7 0.0 26.6 10 5.1 1.6 15.4 0 198 64 687 3.9 1.6 8.2 0 169 53 687

5555 9.6 0.0 27.6 7 8.8 3.9 20.3 0 289 5 1,048 6.4 0.0 12.8 7 195 2 1,048

3333 13.1 2.8 51.4 0 9.5 4.4 16.7 0 43 2 143 8.9 4.4 16.7 0 40 2 143

4444 33.0 4.0 69.1 0 15.2 7.4 25.3 0 62 1 287 12.5 3.4 25.3 0 28 1 113

5555 31.8 0.1 66.4 0 12.5 3.8 20.5 0 72 3 535 11.2 2.0 19.6 0 42 1 244

15151515

1111

2222

10101010

1111

2222

CPU Time RatioCPU Time RatioCPU Time RatioCPU Time Ratio

7777

1111

2222

CPU Time RatioCPU Time RatioCPU Time RatioCPU Time Ratio

5555

1111

2222

CPLEX Gap (%)CPLEX Gap (%)CPLEX Gap (%)CPLEX Gap (%) SSS Gap (%)SSS Gap (%)SSS Gap (%)SSS Gap (%) SSS Gap (%)SSS Gap (%)SSS Gap (%)SSS Gap (%)

SSS-VTVMSSS-VTVMSSS-VTVMSSS-VTVM SSS-B-VTVMSSS-B-VTVMSSS-B-VTVMSSS-B-VTVM

We first consider the results without backtracking, i.e., SSS-VTVM. For small size prob-

lems with 5 and 7 customers, the CPLEX’s average gap across all scenarios is 0.5% whereas

the SSS’s gap is 2.1%. On the average, CPLEX finds the optimum in 96% of the cases and

SSS finds in 30% of the cases. While the CPLEX’s solution quality performance is slightly
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better than that of SSS’s, the difference is small. Further, SSS is able to attain good quality

solutions up to 346 times faster and on the average 29 times faster.

The CPLEX’s gap for medium size problems with 10 customers averages 4.8% across all

scenarios and an optimum is found for 45% of the cases. In comparison, the SSS has an

average gap of 6.2% and finds an optimum for 4% of the cases. While the CPLEX’s solution

quality performance is slightly better than that of SSS, the difference is small. The SSS is

able to attain good quality solutions up to 2, 205 times faster and on the average 296 times

faster. For the large size problems with 15 customers, the CPLEX’s average gap is 16.2%

with an optimality hit rate of 7% of the time. While the SSS’s average gap is 9.8%, it is not

able to find a verifiable optimal solution. Unlike small and medium size problem scenarios,

SSS has a better average gap performance than that of CPLEX’s for large size problems.

As before, the SSS is much more efficient than CPLEX, e.g., up to 1, 892 times faster and

on the average 197 times faster.

The last seven columns of Table 2 present the results for SSS-B-VTVM which improves

over the solution quality performance of the SSS-VTVM through the backtracking phase. For

small size problems the average gap is reduced to 1.2% and the optimality hit rate is increased

to 54%. These improvements are attained without sacrificing the CPU time performance

advantage over CPLEX. For medium size problems, the average gap performance of SSS-

B-VTVM is better than that of the CPLEX, e.g., 4.0% versus 4.8%, respectively. While

this improvement comes with reduced CPU time performance advantage, the SSS-B-VTVM

is still 168 times faster than CPLEX on the average. For large size problems, the average

gap performance improves slightly and is about half of that of the CPLEX, e.g., 8.0%

versus 16.2%, respectively. The CPU time performance is reduced by a third but still about

131 times faster than CPLEX on the average. Across all problem instances, the CPLEX,

SSS-VTVM, and SSS-B-VTVM have on the average 5.3%, 4.8%, and 3.4% optimality gap,

respectively. In terms of CPU performance, SSS-VTVM and SSS-B-VTVM are on the

average 138 and 87 times faster than CPLEX, respectively.

Based on the results in Table 2, we study the effect of number of airports, vehicles and

customers on the performance of SSS-B-VTVM (Figure 3). The effect of the number of

airports is illustrated in Figure 3a. With increasing number of airports, the optimality gap

of SSS-B-VTVM increases at a lower rate than that of the CPLEX. For medium and large

instances, the CPU performance of SSS-B-VTVM is highest with single airport and, for

small instances, highest with two airports. This is because as the problem size increases,

flight itinerary assignment and routing decisions become more interrelated making it difficult
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to solve as an integrated model. Note that the CPU time advantage of SSS-B-VTVM is

significantly reduced for two airport case in the large problem instances. This is attributable

to the time limit which is mostly restrictive for CPLEX than SSS-B-VTVM.
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Figure 3: Effect of number of customers, (a) number of airports and (b) number of vehicles
on the performance of SSS-B-VTVM

Figure 3b illustrates the effect of the number of vehicles. The gap performance of SSS-B-

VTVM is robust with respect to the number of vehicles. This can be explained by the fact

that additional vehicles are utilized to a lesser extent, hence their effect on the optimality

is marginal. In comparison, the gap performance of CPLEX is reduced, especially, for large

problems. This difference is due to the vehicle-based decomposition of SSS-B-VTVM, which

is able to find quality solutions in the presence of underutilized fleet capacity. The CPU time

advantage is relatively reduced, beginning with 4 vehicles in medium size problem instances.

This is, indeed, a result of the time limit which makes the numerator of the CPU time ratio

invariant to the number of vehicles.

5.2. Case Study

To assess the benefits of implementing AAAP, we conducted a case study in a Southern

California MAR using real flight itinerary information and airport locations. The perfor-

mance of AAAP is compared to the single airport policy where the freight forwarder can

only assign customers’ air cargo loads to the flights departing from one airport.

5.2.1. Alternative Access Airports and Depot Locations

The Southern California MAR used in our experiments is described in Hall (2002) and

illustrated in Figure 4. In this MAR, the Los Angeles International Airport (LAX) is the
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largest air-freight port. Hall (2002) suggests redirecting some of the domestic freight load

to Long Beach Airport (LGB) or Ontario International Airport (ONT) to reduce the load

and congestion in the LAX airport. As discussed in Hall (2002) and Chayanupatkul et al.

(2004), a forwarder rarely considers more than two alternative access airports. Hence, we

consider LGB and LAX as the two alternative access airports. For the location of the depot,

we experimented with three location scenarios: adjacent to LAX, adjacent to LGB, and

in-between LAX and LGB. We denote these depot location scenarios as DLAX, DLGB, and

DMID, respectively. For the two scenarios of DLAX and DLGB, we randomly and uniformly

select the depot location in a one-mile radius region with the airport in the center. For DMID

scenario, we select the depot location within a one-mile radius of the city of Compton such

that the travel time is identical to both the LAX and LGB airports. These regions are

illustrated with dashed circles in Figure 4.

Figure 4: Southern California MAR used in the case study

5.2.2. Customer Locations

In all experiments, the fleet size is four vehicles and there are 15 customers. We consider

the scenario where the air cargo loads are time-sensitive (shipped overnight). All customer

loads are available for pick-up by 7:00 pm. We generate multiple case study instances, by

uniformly sampling customer locations within the MAR region, i.e., rectangular region in
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Figure 4. The Google Maps API is used to generate the customer locations and calculate

travel times. For each customer in each problem instance, we first uniformly sample a

geographical coordinate (i.e., latitude and longitude) in the MAR region. Next, we determine

the closest street address to this coordinate point through the Google Maps API. In case of

an infeasible coordinate point (e.g., inside a lake), we re-sample for another coordinate. The

travel times are estimated from the shortest paths accounting for speed limits using Google

Maps API.

5.2.3. Flight Itinerary Options

A forwarder, upon receiving a time-sensitive shipment order, can execute it via an integrator

(e.g. FedEx, UPS), a mixed passenger-cargo (e.g. United Airlines, Delta Airlines, American

Airlines), or a chartered/dedicated freighter. In this case study, we consider only the mixed

passenger-cargo flight itinerary options, the most practiced option for small and mid-size

forwarders.

We assume the final destination of a customer’s air cargo is a domestic destination with

direct flights from both the LAX and the LGB. Accordingly, we consider four major US

airports as the destinations: Boston Logan International Airport in Massachusetts (BOS),

Fort Lauderdale-Hollywood International Airport in Florida (FLL), Dulles International

Airport in Dallas, Texas (IAD), and John F. Kennedy International Airport in New York

(JFK). As for the airlines, we considered American Airlines (AA) and Delta Airlines (DL)

for the LAX airport and JetBlue Airways (B6) for the LGB airport. In determining the

cargo destination for each customer, we randomly assigned each customer’s load to one of

the four destinations. The probability distribution used in this assignment is based on the

frequency of the outgoing flights to each destination from each airport. These probabilities

are presented in the second column of Table 3. For each customer, there are in total four

flight itinerary options, e.g., two options from each airport.

We arbitrarily selected the operation day as August 16, 2010 and collected the flight

itinerary information from the BTS database1. The flight itinerary information, including

the average departure delay and elapsed time (i.e. overall taxi-out to taxi-in time) in August

2010, is listed in Table 4. The departure delays are incorporated in the total delivery time

by assuming flights depart late with their respective mean delay. While the first flight

departure times are rather similar in two airports, the second flight departure times are

1Bureau of Transportation Statistics, U.S. Department of Transportation, Last Accessed November 2011,
http://www.transtats.bts.gov/
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Table 1: Case study flight itinerary options from LAX and LGB airports.

1st 2nd

LAX AA 22:15 07:15* 7 324

LGB B6 22:59 22:40* 11 324

LAX DL 21:05 09:45* 10 324

LGB B6 21:15    23:59 10 307

LAX AA 21:00 21:00* 11 293

LGB B6 21:08 21:08* 23 310

LAX AA 21:20 09:05* 10 312

LGB B6 21:00 08:05* 17 315
JFK 44%

* Next day departure 

Mean Elapsed 
Time (min)

BOS 19%

FLL 13%

IAD 24%

Dest. Prob. Origin Airline
Departure Time Mean Delay

(min)

notably different for some destinations. We consider the starting time of a flight itinerary

as the departure time of its first flight.

5.2.4. Case Study Results

We evaluate the performance of different policies based on total delivery time including road

and air travel times. Note that the practical implementation of the AAAP would account

for forwarder’s negotiated terms with air-carriers, cost structure of road transportation op-

erations, and pricing models (Azadian et al. 2012). However, cost performance, i.e., the

total delivery time, used in this case study provides ample policy comparison opportunity.

Specifically, given a solution, we calculate total delivery time as the sum of road travel times

by all vehicles and the total time elapsed for each customer load from the start of the opera-

tion (19:00) until its delivery time to the destination airport. We have conducted three sets

of experiments corresponding to each depot location scenario (DLAX, DLGB, and DMID).

In each set, we consider three different airport access policies: AAAP (with LAX & LGB),

LAX only, and LGB only. For each depot location, we generated 10 problem instances and

solve them with the SSS-B-VTVM algorithm under each access policy.

The case study flight itinerary options in Table 3 show that there is no significant dif-

ference between the first flight options across the two airports. Further, the recourse flight

itinerary options only differ for the loads going to BOS or FLL. Hence, in this case study,

the performance differences of the three airport policies are primarily attributable to the

road travel time and the small differences in the flight itinerary options. We note that the

performance advantage of utilizing alternative access airports would increase when the flight

itinerary options’ starting times and flight itinerary durations/costs (especially for multi-leg

itineraries) vary between the alternative airports. Therefore, we compare the airport poli-
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cies based on the delivery time saving potential in each depot location scenario. For this,

we estimate a lower bound on the total delivery time as a summation of the lower bound

for flight itinerary time and road travel. The lower bound for the flight itinerary time is

estimated by assigning each customer load to the cheapest itinerary accessible. The lower

bound for the road travel time is calculated by solving a minimum spanning tree connecting

all the nodes.

Table 4 presents the total delivery time in minutes for all problem instances in each

depot location scenario and under three access policies (LAX & LGB, LGB, LAX). For

AAAP policy, i.e., LAX &LGB, we report the percentage of the time that the LAX airport

is selected. Last two rows in Table 4 present the average and standard deviations of the

results. The column ’LB’ denotes the lower bound on the total delivery time for each depot

location scenario.

Table 2: Case study results for three depot location scenarios (DLGB, DMID, DLAX) and
three airport access policies (AAAP, LGB, LAX)

1 6,843 7,012 7,111 7,899 63% 6,800 6,989 7,108 7,362 61% 6,860 7,088 7,137 7,605 82%

2 6,776 6,981 7,181 7,358 51% 6,787 6,979 7,138 7,248 55% 6,799 6,986 7,127 7,404 57%

3 6,823 6,994 7,056 7,817 73% 6,837 7,036 7,115 7,535 72% 6,809 6,923 7,054 7,627 47%

4 6,833 7,011 7,133 7,797 59% 6,821 7,088 7,198 7,474 71% 6,860 7,075 7,107 7,664 87%

5 6,769 6,961 7,177 7,426 47% 6,808 6,999 7,077 7,561 71% 6,833 6,984 7,246 7,604 37%

6 6,765 6,932 7,080 7,501 53% 6,823 6,981 6,997 7,801 91% 6,741 6,904 7,127 7,315 42%

7 6,852 7,061 7,125 7,661 77% 6,746 6,948 7,147 7,251 50% 6,839 7,058 7,164 7,440 67%

8 6,819 7,000 7,172 7,514 51% 6,812 6,932 7,065 7,635 47% 6,781 6,988 7,181 7,461 52%

9 6,763 6,961 7,123 7,390 55% 6,832 7,042 7,158 7,614 64% 6,793 7,013 7,158 7,375 60%

10 6,804 6,996 7,151 7,797 55% 6,749 6,955 7,205 7,299 45% 6,786 6,918 7,153 7,917 36%

Ave. 6,805 6,991 7,131 7,616 58% 6,802 6,995 24% 7,121 63% 6,810 7,075 7,107 7,664 57%

Sdev. 34 35 41 201.5 10% 32 48 2% 63 14% 38 66 50 178 18%

DLGB Depot DMID Depot DLAX Depot

AAAPLB LB LAXAAAP LGBNo LGB LAX LGBLB LAXAAAP

The AAAP policy dominates the single airport policy in all depot location scenarios and

in all problem instances. The AAAP’s impact on the total delivery time can be assessed

through the following performance measure:

ρ =
zAAAP − LB

min{zLGB, zLAX} − LB
% (32)

where zAAAP , zLGB, and zLAX correspond to the solutions of three airport policies.

The performance measure in (32) indicates the percentage total delivery time improve-
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ment of the AAAP policy over single airport policies. In the case of DLGB depot location,

the AAAP policy improves the total delivery time performance on the average by 58%. The

improvements range between 47% and 77%. Similarly, for the DMID depot location, the

average improvement of AAAP is 63% and the range is between 45% and 91%. In the case

of DLAX depot location, the average improvement is 57% and the range is between 36% and

87%. Overall, the AAAP’s improvement over single airport policies is 59% on the average

across all depot locations.

In Figures 5-7, we illustrate the routes identified for each depot location and airport

policy for sample problem instances. These routes are turn-by-turn routes from the Google

Maps API. The labels are “1” for the location of depot, “2” to “16” for the locations of 15

customers, and LAX and LGB for the airports. The label in parenthesis denotes the order

of visit by the vehicle. Each color route corresponds to a unique vehicle. For instance, in

Figure 5a, the vehicle with blue color route starts its trip from the depot located in Compton

(i.e. node 1), visits customers 5, 6, 8, 3, delivers loads to LAX, and returns to the depot.

Accordingly, the customer 5 is labeled 5(1), customer 6 is labeled 6(2), and so forth. In all

instances, at most three of the four vehicles are used, indicating absence of recourse flight

usage. In Figure 5, there are three vehicles in all airport policies. In Figures 6a and 7b only

two vehicles are used since the third vehicle does not provide any additional benefit in terms

of improving the total delivery cost. In Figures 5c, 6c and 7c, two vehicles deliver customer

loads to both the LAX and LGB airports whereas the third vehicle visits only the LGB. In

Figure 7a, the third vehicle is used to pick up and deliver the load of only customer 5.
 

      

(a)       (b)            (c) 
    

 

Figure 5. Routes for problem instance #10 with DMID depot 

  

Figure 5: Routes for problem instance #10 with DMID depot
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(a)       (b)              (c) 
 

Figure 6. Routes for problem instance #1 with DLGB depot 

  

Figure 6: Routes for problem instance #1 with DLGB depot

 

     

(a)       (b)            (c) 
 

 Figure 7: Routes for problem instance #6 with DLAX depot
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6. Conclusion

We study a freight forwarder’s operational implementation of AAAP in a MAR for air

cargo transportation. The forwarder’s AAAP implementation involves the task of select-

ing flight itineraries for a given set of heterogeneous air cargo customers, picking up their

loads via a fleet of vehicles and then delivering to the airports in the region. The goal

is to minimize the total cost of air and road transportation and service by simultaneously

selecting the air cargo flight itinerary and scheduling pickup and delivery of multiple cus-

tomer loads to the airport(s). We formulated a novel model (ATP-PDP) which extends

the existing PDP models to address the case where the delivery cost is both destination

and time dependent. This model is further strengthened by preprocessing steps and special

cuts. To overcome the computational complexity, we adapted an efficient solution method,

SSS, based on Lagrangian decomposition. The SSS method overcomes the challenges as-

sociated with identical subproblems in standard Lagrangian decomposition and iteratively

solves the ATP-PDP in parts. Since Lagrangian based methods, including SSS, can con-

verge to a primal infeasible solution, we developed a modified variable target methodology

for subgradient optimization. The integrated method, SSS-B-VTVM, converges to a primal

feasible solution and the solution quality can be controlled by trading-off the quality with

computational performance.

We conducted an experimental study to assess the optimality gap and CPU time per-

formance of SSS-B-VTVM and compared with those of CPLEX. The results show that the

SSS-B-VTVM yields near-optimal primal feasible solutions, i.e., on the average 3.4% opti-

mality gap compared to 5.3% of CPLEX. Further, the SSS-B-VTVM is able to achieve this

performance on the average about 87 times faster than CPLEX and more than thousand

times faster for some problems. In addition, we have applied the modeling and solution

methodology for a case study in a Southern California MAR and compared the AAAP

performance with single airport policies considering various depot location and customer

scenarios. The computational results indicate that the AAAP is able to realize savings in

the order of 36% to 91% of the potential saving opportunities.

The proposed model and solution methodology provide small- and medium-sized freight

forwarders an operational decision support tool to improve their customer service levels and

reduce transportation cost in road and air modes. This research can be extended in multiple

directions. Since the ATD-PDP generalizes the PDP, it thus can be used to study similar

problems in other application areas. The heuristic methods, e.g., in Ropke and Pisinger

(2006) and Gendreau et al. (1999), can be adapted to solve ATD-PDP. The SSS-B-VTVM
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methodology can be applied to a broad range of vehicle routing problems where standard

Lagrangian decomposition leads to identical subproblems. Further research can investigate,

using the ATD-PDP model, the forwarder’s problem of determining the depot locations to

best serve customers. Similarly, it can also be used to assess the competitiveness of multiple

airports in a MAR for air cargo shipments under various flight itinerary (e.g., frequency,

schedule, cost) scenarios.

This work was supported by funding grant DTRT06-G-0039 from the US Department

of Transportation through the University Transportation Center at University of Toledo

(UT-UTC).
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Hernández-Pérez, H., Salazar-González, J.-J., 2004a. A branch-and-cut algorithm for a traveling

salesman problem with pickup and delivery. Discrete Applied Mathematics 145(1), 126-139.
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B. Operational Response Model and Novel Solution
Methodology for Managing Disruptions at Inter-modal
Facilities and Transportation Networks

1. Introduction

Facility location decisions, as strategic supply chain decisions, require significant invest-

ment and forward looking to anticipate and plan for uncertain future events. An important

category of such uncertain events is the disruption of facilities which are critical for the

ability to efficiently serve the customer demand (Schütz, 2009). These disruptions can be

natural disasters or man-made (such as terrorist attacks, labor strikes, etc.). In certain cases,

the disruption at a region may extend or migrate through the network and affect other parts

of the supply chain network (Masihtehrani, 2011). Recent examples of such disruptions are

the 2011 earthquake in Japan affecting Toyota’s ability to ship parts and finished vehicles

(The Guardian, 2011 & Brennan, 2011), hurricanes Katrina and Rita in 2005 disrupting

the nation’s oil refineries, and the 2000 fire at the Philips plant halting the production of

Ericsson and Nokia (Snyder et al., 2006).

Following a disruption event, there is hardly any recourse action to change the supply

chain substructure rapidly (Snyder et al., 2006). Instead, a common recourse is to reassign

customers to other facilities or arrange alternative sources of supply. In either case, the cost

of serving the customer demand increases e.g., due to higher transportation cost. Over the

past decade, the consideration of such disruptions affecting the supply chain network design

has received significant attention from both the researchers and practitioners. An exemplary

earlier study is Snyder & Daskin (2005) where authors develop a reliability based formulation

for Uncapacitated Facility Location Problem (UFLP) and propose a Lagrangean relaxation

based algorithm. More recently, Shen et al. (2011) study a variant of the reliable UFLP in

Snyder & Daskin (2005) called uncapacitated reliable facility location problem (URFLP).

Authors propose highly efficient approximation algorithms for URFLP by exploiting the

special structure of the problem. However these approximations cannot be applied to the

general class of facility location problems such as the capacitated reliable facility location

problems (CRFLP).

In practice, capacity decisions are considered jointly with the location decisions. Further,

the capacity of facilities often cannot be changed in the event of a disruption. Following

a facility failure, customers can be assigned to other facilities only if these facilities have

sufficient available capacity. Thus capacitated reliable facility location problems are more
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complex than their uncapacitated counterparts (Shen et al., 2011). The studies considering

capacitated reliable facility location problem are limited. Snyder & Ulker (2005) study

the CRFLP and propose an algorithm based on Sample Average Approximation (SAA)

embedded with Lagrangean relaxation. Gade (2007) apply the SAA method in combination

with a dual decomposition method to solve CRFLP. Peng et al. (2011) propose a hybrid

metaheuristic based on genetic algorithm to solve a related problem where the objective is

to minimize the total fixed and transportation cost while limiting the disruption risk based

on the p-robustness criterion. In summary, the earlier work on CRFLP uses either SAA

based approximation or metaheuristic methods to overcome the computational complexity

associated with large number of scenario realizations.

In this study we develop a novel technique, called Swarm Intelligence Based Sample

Average Approximation (SIBSAA), hybridizing the swarm intelligence and SAA method to

efficiently solve the CRFLP. While the standard SAA procedure is effective with sufficiently

large samples, the required sample size can be quite large for the desired confidence level.

Further, the SAA procedure selects the best performing sample solution and discards the

remaining sample solutions which contain valuable information about the problem’s un-

certainty. The main idea of the proposed hybrid method is to re-use all the information

embedded in sample solutions by iteratively solving the sample problems while injecting

social learning in the solution process. The swarm intelligence injection is based on the

Particle Swarm Optimization (PSO). Our experimental results indicate that the proposed

hybrid method improves the computational efficiency significantly while attaining same or

better solution quality than that of the SAA method.

The rest of this paper is organized as follows. In §2, we review the relevant literature.

In §3, we present capacitated reliable facility location problem and its formulation, briefly

summarize the SAA and PSO methods, and then describe the proposed hybrid algorithm in

detail. In §4, we report on the computational experiments comparing the solution quality

and CPU time efficiency of the SAA algorithm and the proposed hybrid algorithm. We

conclude with discussion and future research directions in §5.

2. Literature Review

Developing efficient methods for solving large-scale stochastic problems is a challenge

in optimization. There are several exact methods such as Progressive Hedging Algorithm

(Rockafeller & Wets, 1991), and L-shaped Decomposition (Van Slyke & Wets, 1969) for

solving stochastic programming problems. However, these exact methods become impracti-
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cal when the number of scenarios is very large. Therefore, we herein focus on two types of

approximate methods: sampling based methods and metaheuristics. Sampling methods can

be applied in either interior or exterior mode (Linderoth et al., 2006). In the interior mode,

the algorithm aims to solve the full problem and only select a sample when an approximate

value is needed (Higle and Sen, 1991). In the exterior mode, a sample is randomly selected

among all possible scenarios and an approximation of the objective value for the true prob-

lem is determined by solving the sample. The SAA method uses exterior sampling and has

become a popular technique in solving large-scale stochastic programming problems. This

is primarily due to its ease of application. It has been shown that the solutions obtained

by the SAA converge to the optimal solution as the sample size is sufficiently large (Ahmed

& Shapiro, 2002). However these sample sizes could be quite large and the actual rate of

convergence depends on the problem conditioning. Several studies reported successful ap-

plication of SAA to various stochastic programs (Verweij et al., 2002, Kleywegt et al., 2001,

Shapiro & Homem-de-Mello, 1998 ). The SAA approach is also extensively used in solving

stochastic facility location and network design problems (Snyder & Ulker, 2002, Gade, 2007,

Santoso et al., 2005, Schütz et al., 2009, Chouinard et al., 2008).

Alternative to sampling methods, the metaheuristic methods such as such as Genetic

Algorithms (GA), Tabu Search (TS), and Simulated Annealing (SA) have been used to solve

stochastic programming problems. Kratica et al. (2001) applied GA to solve simple facility

location problem. Wang et al. (2008) proposed a stochastic programming-based genetic

algorithm to determine profitable capacity planning and task allocation plan for resource

portfolio planning problem. Authors reported that using a stochastic sampling procedure

improves the effectiveness of the genetic algorithm. Arostegui et al. (2006) compared the

TS, SA, GA methods’ performances by solving various facility location problems under time-

limited, solution limited and unrestricted conditions. They reported that the TS method

gives better performance overall than both the SA and the GA methods. In this study, we

integrate swarm intelligence within the SAA algorithm in an effort to reduce the need to

increase sample sizes for improved solution quality. The proposed hybrid method utilizes a

swarm intelligence concept similar to that of PSO and enables the swarm learning to take

place between the sample solutions of the SAA (i.e.,swarm) . This combined approach differs

from the previous studies using metaheuristics to solve stochastic programming problems

in two ways. First, the solution methodology is based on SAA where the solutions in the

swarm are obtained by exact solution of the sample subproblems (e.g., rather than an update

mechanism such as random crossover operation in GA and velocity update in PSO). Second,
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the swarm learning is incorporated into the objective function by penalizing deviations from

a balanced solution combining the swarm’s best solution found thus far and swarm’s average

solution. Hence, the swarm learning is an integral part of the solution generation process in

the proposed SIBSAA method.

3. Problem Statement and Methodology

In this section, we first present Capacitated Reliable Facility Location Problem (CR-

FLP) formulation. Next, we summarize the standard SAA and PSO heuristic methods and

describe the proposed hybrid SIBSAA methodology in detail.

3.1. Capacitated Reliable Facility Location Problem(CRFLP)

We now introduce the notation used throughout this paper. Let D denote the set of

customers (i.e., demand points) and F denote the set of possible facility sites. The fixed

cost for facility i ∈ F is denoted by fi and incurred if the facility is opened. Let dj be

the demand for customer j ∈ D and cij denote the cost of satisfying each unit demand

of customer j from facility i and include such variable cost drivers as transportation and

production costs. Each facility i has a limited capacity and can serve at most bi units

of demand. Facilities are subject to failure and can become unavailable in the event of a

disruption. A customer j cannot be served by any of the facilities whenever all facilities fail,

there is not sufficient capacity among the surviving facilities to meet customer j’s demand, or

the cost of serving customer j’s demand via surviving facilities is prohibitive. In such cases,

the customer j is assigned to an emergency facility and a large penalty cost is incurred for

each unit of unsatisfied demand. The emergency facility can represent an alternative supply

source and the large penalty cost then represents the outsourcing cost. In the absence of an

alternative supply, the emergency facility corresponds to the lost-sale with the penalty cost

of forfeited profit. For simplicity, we denote the last facility in F as the emergency facility

and the cost c|F |j as the customer j’s unit demand penalty cost.

We formulate the CRFLP as a two-stage stochastic programming problem. In the first

stage, the location decisions are made before random failures of the located facilities. In the

second stage, following the facility failures, the customer-facility assignment decisions are

made for every customer given the facilities that have survived. The goal is to identify the set

of facilities to be opened while minimizing the total cost of open facilities and the expected

cost of meeting demand of customers from the surviving facilities and the emergency facility.

In the scenario based formulation of CRFLP, let s denote a failure scenario and the set of
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all failure scenarios is S, where s ∈ S. Let ps be the probability that scenario s occurs

and
∑

s∈S ps = 1. Further let ksi denote whether the facility i survives (i.e., ksi = 1) and

ksi = 0 otherwise. For instance, in case of independent facility failures, we have |S| = 2|F |−1

possible failure scenarios for |F | − 1 facilities and the last facility is the emergency facility

which is perfectly reliable. Note that our proposed method does not require any assumption

on independence and distribution of each facility’s failure.

The binary decision variable xi specifies whether facility i is opened or not, and the

binary variable ysij specifies whether customer j assigned to facility i in scenario s or not.

We note that the single sourcing assumption, while a preferred method in practice, is not

restrictive for the proposed method. The scenario based formulation of the CRFLP as a two

stage stochastic program is as follows.

CRFLP:

Minimize
∑
i∈F

fixi +
∑
s∈S

ps
∑
j∈D

∑
i∈F

djcijy
s
ij (1)

Subject to ∑
i∈F

ysij = 1 ∀j ∈ D, s ∈ S (2)

ysij ≤ x ∀j ∈ D, i ∈ F, s ∈ S (3)∑
j∈D

djy
s
ij ≤ ksi bi ∀i ∈ F, s ∈ S (4)

xi, y
s
ij ∈ {0, 1} ∀j ∈ D, i ∈ F, s ∈ S (5)

The objective function in (1) minimizes the total fixed cost of opening facilities and the

expected second stage cost of satisfying customer demand through lasting and emergency

facility. Constraints (2) ensure that each customer is assigned to either an open facility or the

emergency facility in every failure scenario. Constraints (3) ensure that a customer’s demand

cannot be served from a facility that is not opened in every failure scenario. Constraints (4)

prevent the assignment of any customer to a facility if it has that is failed and also ensure

the total demand assigned the facility does not exceed its capacity in every failure scenario.

Constraints (5) are integrality constraints.

As stated in the literature review, the main disadvantage of scenario based formulations

is that the number of scenarios grows exponentially with number of facilities. Since enumer-

ating all scenarios is not practical, approximation algorithms are often employed (Snyder et
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al., 2006). In the next subsection, we discuss two approximation methods (SAA and PSO)

and describe the hybrid SIBSAA methodology.

3.2. Swarm Intelligence based SAA Method

The hybrid SIBSAA algorithm integrates a swarm intelligence strategy inspired by PSO

with the classical SAA method in order to improve the solution quality and efficiency. For

completeness of the paper, we briefly review the SAA and PSO algorithms in the next two

subjections.

3.2.1. Sample Average Approximation (SAA)

The SAA method is commonly used method to solve large-scale stochastic optimization

problems (Ahmed & Shapiro, 2002, Kleywegt et al., 2001, Schütz et al., 2009). The main

idea of the SAA is to approximate the objective function value of the stochastic program

by solving the problem for a sample of scenarios. After solving the problem for a sufficient

number of samples, the first-stage solutions of each sample is tested in a large sample by

solving for only the second-stage decisions. The best performing sample solution is then se-

lected as the final solution. In our computational experiments, we compare the performance

of the proposed hybrid method with that of SAA. The steps of the SAA procedure to solve

the CRFLP are as follows.

SAA Procedure for CRFLP

Initialize: Generate M independent random samples m = 1, 2, . . . ,M with scenario sets

Nm where |Nm| = N . Each sample m consists of N realizations of independently and

identically distributed (i.i.d.) random scenarios. We also select a reference sample which is

sufficiently large, e.g., |N ′| � N .

Step 1: For each sample m, solve the following problem and record the sample optimal

objective function value vm and the sample optimal solution xm={xmi }∀i∈F .

SAA-CRFLP (m):

Minimize
∑
i∈F

fix
m
i +

∑
s∈Nm

1

|Nm|
∑
j∈D

∑
i∈F

djcijy
sm
ij (6)

Subject to ∑
i∈F

ysmij = 1 ∀j ∈ D, s ∈ Nm (7)
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ysmij ≤ xmi ∀j ∈ D, i ∈ F, s ∈ Nm (8)∑
j∈D

djy
sm
ij ≤ ksi bi ∀i ∈ F, s ∈ Nm (9)

xmi , y
sm
ij ∈ {0, 1} ∀j ∈ D, i ∈ F, s ∈ Nm (10)

Step 2: Calculate the average vM of the sample optimal objective function values obtained

in Step 1 as follows.

vM =
1

M

M∑
m=1

vm (11)

Step 3: Estimate the true objective function value v̂m of the original problem for each

sample’s optimal solution. Solve the following problem for each sample using the optimal

first stage decisions xm from Step 1.

v̂m= Minimize
∑
i∈F

fix
m
i +

|N ′|∑
s=1

1

|N ′|
∑
j∈D

∑
i∈F

djcijy
sm
ij (12)

Subject to constraint sets (2), (3), (4), (5), and using Nm ≡ N ′.

Step 4: Select the solution xm with the best v̂m, i.e. xSAA = argminm=1,...,M v̂m as the

solution and vSAA = minm=1,...,M v̂m , as the solution value of SAA.

Let v∗ denote the optimal objective function value of the original problem CRFLP. The

vM is an unbiased estimator of E [v] which is the expected optimal objective function value

of sample problems. Since E [v] ≤ v∗, the vM provides a statistical lower bound on the v∗

(Ahmed & Shapiro, 2002). While vM does not always provide a lower bound on the v∗,

as observed in Shen et al. (2011), it is useful in assessing the quality of the solution value

of SAA v̂SAA. The reference set N ′ is used to estimate the objective function value of the

sample problem solutions in the original problem CRFLP.

3.2.2. Particle Swarm Optimization (PSO)

The PSO methodology, first proposed by Kennedy and Eberhart (1995), is a population-

based metaheuristic search technique motivated by the social behavior of organisms such as

bird flocking and fish schooling. It is based on the swarm intelligence idea where knowledge

is optimized by social interaction and the thinking is not only personal but also social. The

PSO achieves local and global search capabilities where the intensification and diversification

are achieved via relative weighting of the personal and social (swarm-based) thinking. PSO
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has been successfully applied in solving many combinatorial optimization problems in which

the objective space possesses many local optimal solutions. In such problems where there

are many multiple local optima, the PSO provides the advantage of escaping from the local

optima through the communication between the members of the swarm.

In PSO, each solution is represented as a particle in a swarm. Each particle has a

position and a fitness value that is evaluated by the fitness function to be optimized. The

particles iterate from one position to another through a velocity vector. This velocity vector

is determined by the particle’s most recent displacement, its best position thus far, and the

best position encountered by all particles in the swarm. The velocity vector of each particle

is calculated by updating the previous velocity by two best values: pbest and gbest. The

personal best (pbest) is the particle’s best position it has visited thus far and tracked by

each particle. The global best (gbest), tracked by the swarm, is the best position visited

by any particle in the population. The influence of the personal and global bests on the

velocity vector is controlled by weights called learning factors.

Let L be the set of particles, l = 1, . . . , L in swarm. In every iteration of the PSO, the

particle l’s velocity at iteration k, ul (k), is updated according to :

ul (k + 1) = γul (k) + δ1r1 [θl (k)− xl (k)] + δ2r2 [µ (k)− xl (t)] (13)

where xl (k) is the position (solution) of particle l at iteration k, and the parameters γ

and (δ1, δ2) are inertia weight and learning factors controlled by the user, respectively. The

weights r1 and r2 are uniform random numbers generated at every velocity update. The

value θl (k) is the individual best solution for particle l at iteration k, and µ (k) is the

swarm’s global best solution at iteration k. Using this velocity, the particle’s position is

updated as xl (k + 1) = xl (k)⊕ ul (k + 1) where the operator ⊕ represents the update

scheme depending on whether xl is continuous or discrete (Kennedy & Eberhart, 1997).

The three terms in (13) represent the memory, cognitive learning and social learning of

the particle, respectively. The γul (k) is called the particle’s inertia which induce the particle

to move in the same direction as the most recent displacement. The weights (δ1, δ2) are

referred as the learning rates since the inertia weight controls the extent to which the memory

of the previous velocity influences the new velocity. The diversification and intensification

of the particle is controlled through the inertia weight as well as velocity bounds which limit

velocity to preset maximum and minimum levels (Shi & Eberhart, 1998). Inertia weight,

velocity bounds and learning rates jointly determine the particle’s motion. Usually, a high

inertia weight is used at the beginning and then gradually decreased so as to diversify the

53



solution.

3.2.3. Hybrid Method: Swarm Intelligence based SAA (SIBSAA)

The proposed method is a hybridization of the SAA and PSO. The motivation for this

hybridization originates from the last stage of the SAA method (Step 4) where the best

performing solution is selected and the rest of the solutions are discarded. However, this

discarding of (M − 1) sample solutions is a loss of valuable sample information as well as

loss of effort spent in solving each sample’s solution. Let’s consider the implementation

of the classical SAA procedure in the context of PSO and treat each sample solution as

a particle. Then the implementation of SAA would correspond to iterating the particles

(sample solutions) in the swarm (the set of sample solutions) only once and then selecting

the best performing particle. In the PSO, however, the particle iterations are sustained with

the particle’s recent memory (e.g., inertia) as well as with the social learning. Hence, in the

proposed hybrid approach, we modify the SAA method by continuing the solution of the

sample problems (e.g. particles) while injecting the social learning in the solution process.

The underlying premise of this hybridization is that, by starting with sufficient number

of samples (representative of the entire scenario set), the continued iteration of the SAA

method with social learning would converge the sample solutions to the optimal solution of

the original problem.

An important distinction of the proposed hybrid method from the classical PSO is the

movement of particles. The PSO iterates the particles according to a velocity vector and the

positions of particles are suboptimal solutions (until convergence to the global optimum).

In comparison, the SIBSAA solves the sample problems to optimality. However, since the

samples do not correspond to the entire scenario set, these optimal solutions are sub-optimal

for the original problem. As a result of this distinction, the injection of the social learning

in particle’s movement is different in the SIBSAA than that in PSO. The social learning in

SIBSAA is achieved through dynamically penalizing the deviation of the sample solution

from the swarm’s balanced solution (x
k
) at iteration k. This balanced solution is composed

of swarm’s best incumbent solution and swarm’s average solution at iteration k. The swarm’s

best incumbent solution (xbest) is the solution with the best objective value (v̂best) considering

the reference set N ′. On the other hand, the swarm’s average solution (xk) at iteration k is

the probability weighted average of sample solutions at iteration (k−1). Similar to the PSO,

the social learning is modulated with parameters ρk, ωkm, and αk. The parameter ρk is the

swarm learning parameter which penalizes the sample solutions’ squared Euclidean norm

deviation from the swarm’s balanced solution at iteration k. The parameter ωkm penalizes
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the linear deviation of the sample solutions from the swarm’s balanced solution at iteration

k. Lastly, the parameter αk is a balancing weight between the swarm’s average solution and

the swarm’s best incumbent solution, and used to calculate the swarm’s balanced solution.

We first present the proposed SIBSAA algorithm and then describe its steps in detail.

For brevity, we use the same notation as before and only introduce the additional notation

used in the SIBSAA algorithm.

Notation:

k, kmax : iteration index and maximum number of iterations

Pm, P̂m : probability and normalized probability of realization of sample m

xm,k : solution vector for sample m at iteration k

xk : swarm’s average sample solution at iteration k

x
k

: swarm’s balanced solution at iteration k

xbest : best incumbent solution

v̂best : objective function value of the best incumbent solution with respect to N ′

v̂kbest : objective function value of the best solution at iteration k with respect to N ′

ωkm : dual variable vector for sample m at iteration k

ρk : swarm learning parameter at iteration k

β : update factor for the swarm learning parameter

αk : weight for learning from the global best at iteration k

4α : update parameter for global learning weight

εk : Euclidean norm distance of sample solutions from the x
k

at iteration k − 1

ε : convergence threshold for solution spread

xSIBSAA : best solution found by SIBSAA

vSIBSAA: objective function value of the best solution found by SIBSAA

The pseudo-code for the swarm intelligence based SAA is as follows:

Swarm Intelligence based SAA Algorithm (SIBSAA) for CRFLP

Initialize: Generate M independent random samples m = 1, 2, . . . ,M with scenario sets

Nm where |Nm| = N . Each sample m consists of N realizations of independently and

identically distributed (i.i.d.) random scenarios. We also select a reference sample which is

sufficiently large, e.g., |N ′| � N .

◦ Set k := 0, ωk=0
m = 0 for ∀m = 1, . . . ,M , αk=0, and ρk=0 := 1,
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◦ Calculate Pm :=
∏

s∈Nm
ps and P̂m = Pm∑M

m=1 Pm
and denote P̂=

{
P̂m

}
∀m
.

Step 1: Execute the Steps 2-4 of the SAA Algorithm for CRFLP using the scenario sets

Nm for m = 1, 2, . . . ,M and the reference set N ′.

1.1. Assign the solutions xbest:= xSAA and xm,k=0 = xm for ∀m = 1, . . . ,M .

Step 2: Update the problem parameters as follows,

2.1. Set k := k + 1,

2.2. Calculate xk := P̂xm,k−1,

2.3. Calculate x
k

:= αkxk +
(
1− αk

)
xbest,

2.4. Update αk := αk−1 −4α,

2.5. Update ρk if k > 2,

ρk :=

{
βρk−1 if εk > εk−1/2

ρk−1 otherwise

2.6. Calculate ωkm := ωk−1m + ρk
(
xm,k−1 − x

k
)

.

Step 3: For each sample m = 1, . . . ,M , solve the following problem and record the sample

optimal objective function value vm,k and the sample optimal solution xm,k=
{
xm,ki

}
∀i∈F

.

SIBSAA-CRFLP(m):

Minimize
∑
i∈F

fix
m,k
i +

∑
s∈Nm

1

|Nm|
∑
j∈D

∑
i∈F

djcijy
smk
ij + ωkmx

m,k+
ρk

2

∥∥∥xm,k − x
k
∥∥∥2 (14)

Subject to constraints (7), (8), (9), and (10). Update εk :=
(∑M

m=1

∥∥∥xm,k − x
k
∥∥∥)1/2.

Step 4: Using the sample solutions xm,k for m = 1, . . . ,M obtained in Step 3, estimate the

true objective function value v̂m of the original problem by solving the following problem

for each sample.

v̂m,k= Minimize
∑
i∈F

fix
m
i +

|N ′|∑
s=1

1

|N ′|
∑
j∈D

∑
i∈F

djcijy
smk
ij (15)

Subject to constraints (7), (8), (9), and (10) using Nm ≡ N ′.

Step 5: Select the solution xm,k with the best v̂m,k. Let v̂kbest = argminm=1,...,M v̂m,k , then

v̂best :=

{
v̂kbest if v̂kbest < v̂best
v̂best otherwise
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xbest :=

{
xm
′,k|m′ = argminm=1,...,M v̂m,k if v̂kbest < v̂best

xbest otherwise

Step 6: Check for convergence: If (εk ≥ ε or x
k 6= xbest) and (k < kmax), then return

to Step 2, otherwise terminate with best found solution xSIBSAA=xbest and solution value

vSIBSAA = v̂best.

The initialization step of the SIBSAA is similar to that of SAA’s and the only additional

calculation is the sample m’s probability and normalized probabilities, e.g., Pm and P̂m.

The probability P̂m is used to calculate the swarm’s average sample solution xk at iteration

k (Step 2.2). The first step in SIBSAA is to execute the standard SAA procedure (Step 1).

Next, we calculate the swarm’s average solution and the balanced solution. The swarm’s

balanced solution (x
k
) is a weighted average of the average solution (xk) and the incumbent

best solution (xbest) as calculated in Step 2.3. The weight factor αk ∈ [0, 1] used in Step

2.3 determines the bias of the social learning; whereas high values tend the sample solutions

to the sample average solution, low values tend to the incumbent best solution. There are

two strategies for modulating the social learning bias; αk can be static by setting 4α = 0

or can be dynamically varied between iterations by setting 4α > 0 (see Step 2.4). The

advantage of dynamic αk is that, beginning with a large αk, we first prioritize the sample

average solution until the incumbent best solution quality improves. This approach allows

guiding the sample solutions to a consensus sample average initially and then directing the

consensus sample average in the direction of improved best incumbent solution.

In Step 2.5, we update the swarm learning parameter ρk depending whether the distance

(εk) of sample solutions from the most recent balanced solution has sufficiently improved.

We choose the improvement threshold as half of the distance in the previous iteration (e.g.,

εk−1). Similarly, in Step 2.6, we update the penalty parameter (ωkm) for the linear deviation

of every sample’s solution from the swarm’s balanced solution at iteration k. Note that the

ωkm are the Lagrange multipliers corresponding to the equivalence of each sample’s solution

to the balanced solution.

In Step 3, we solve each sample problem with additional objective function terms rep-

resenting the social learning and calculate the deviation of the sample solutions from the

balanced solution (i.e., εk). Step 4 estimates the objective function value of each sample

solution in the original problem using the reference set N ′. Step 5 identifies the sample
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solution xm,k with the best v̂m,k in iteration k and updates the incumbent best v̂best if there

is improvement. The Steps 4 and 5 correspond to the integration of SAA method’s selection

of the best performing sample solution. In contrast to SAA’s termination with the best

performing sample solution, the proposed SIBSAA retains this information to induce social

learning in the next iteration through the balanced solution. Step 6 checks whether the

stopping conditions are met. If the iteration limit is reached k ≥ kmax or when the all

sample solutions converged to the balanced solution within a tolerance, then the SIBSAA

terminates with the best found solution. The worst-case solution of the SIBSAA is equiv-

alent to the SAA solution with the same set of samples. This can be observed by noting

that the best incumbent solution is initialized with the SAA’s solution. Hence, the SIBSAA

converges to a solution which has the same performance or better than that of SAA’s.

4. Experimental Study

We now describe the experimental study performed to investigate the computational and

solution quality performance of the proposed SIBSAA for solving CRFLP. We benchmark

the results of SIBSAA with those of SAA and an exact solution. We solved the CRFLP

exactly by using the deterministic equivalent formulation. All algorithms are programmed

in Matlab R2010b and integer programs are solved with CPLEX 12.1. The experiments

are conducted on a PC with Intel(R) Core 2 CPU, 2.13 GHz processor and 2.0 GB RAM

running on Windows 7 OS. Next, we describe the experimental setting and data in detail. In

Section 4.2, we report on sensitivity analysis results of SIBSAA’s performance with respect

to algorithm’s parameters. In Section 4.3, we present and discuss the benchmarking results.

4.1. Experimental Setting

We used the test data sets from Zhan (2007) that are also used in Shen et al. (2011) for

the URFLP. In these data sets, the coordinates of site locations are i.i.d. and sampled

from U [0, 1]×U [0, 1]. The customer and facility sites are identical. The customer demand

is i.i.d, sampled from U [0, 1000], and rounded to the nearest integer. The fixed cost of

opening a facility is i.i.d. and sampled from U [500, 1500], and rounded to the nearest

integer. The variable costs cij for i = 1, . . . , |F | − 1 and ∀j are chosen as the Euclidean

distance between sites. The penalty cost c|F |j for serving customer j from the emergency

facility is i.i.d. and sampled from U [0, 15]. Since Zhan (2007) and Shen et al. (2011)

consider uncapacitated RFLP, the data sets do not have facility capacities. We have selected

identical capacity levels for all facilities bi=1,..,|F | = 2, 000. In generating the failure scenarios,
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we assume that the facility failures are independently and identically distributed according

to the Bernoulli distribution with probability qi, i.e., the failure probability of facility i. In

our experiments, we use uniform failure probability, i.e., qi=1,...,|F |−1 = q, and consider the

cases q = {0.1, 0.2, . . . , 0.9}. The emergency facility is perfectly reliable, i.e., q|F | = 1. Note

that the case q = 0 corresponds to the deterministic fixed-charge facility location problem,

and q = 1 corresponds to the case where all facilities fail. The solution of the latter one is

where all customers are assigned to the emergency facility and the objective function value

is then
∑

j∈D djc|F |j. The failure scenarios s ∈ S are generated as follows. Let’s denote

F s
f ⊂ F be the facilities that are failed, and F s

r ≡ F\F s
f be the set of facilities that are

reliable (not failed) in scenario s. The facility indicator parameter in scenario s become

ksi=1 if i ∈ F s
r, and ksi=0 otherwise. The probability of scenario s is then calculated as

ps = q|F s
f |(1− q)|F

s
f |−1.

In all experiments, we used |D| = |F | − 1 = 10 sites which is a medium-sized CRFLP

problem and is more difficult to solve than the uncapacitated version (URFLP). The size of

the failure scenario set is |S|=1,024. The deterministic equivalent formulation has variables

xi and ysij totaling |F |+ |F | × |D| × |S| = 11 + 11× 10× 1024 = 112, 651 binary variables.

Similarly, it has constraints (7), (8) and (9) totaling |D|×|S|+|F |×|D|×|S|+|F |×|S| = 11+

11× 10× 1024 = 134, 144 constraints. We generated sample sets for SAA and the proposed

SIBSAA by randomly sampling from U [0, 1] as follows. Given the scenario probabilities, ps,

we calculate the scenario cumulative probability vector {p1, (p1 + p2) , . . . , ( p1 + p2 + . . . +

p|S|−1), 1} which has |S| intervals. We first generate the random number and then select

the scenario corresponding to the interval containing the random number. We tested the

SAA and SIBSAA algorithms with varying number of samples (M), and sample sizes (N).

We used identical sample sets in all the SAA and SIBSAA comparisons where M and N

are same. In selecting the reference set, we use the entire scenario set, i.e., N ′ = S, as the

evaluation of a solution with |S|=1,024 scenarios can be easily computed. Lastly, all the

datasets used in the following sections, including sample sets, are available from the authors

upon request.

4.2. SIBSAA Parameter Sensitivity

We evaluated the sensitivity of the SIBSAA with respect to the social learning bias parameter

(α), number of samples (M), and the swarm learning parameter update factor (β). First, we

tested for α which determines the bias of the social learning, e.g., biased towards swarm’s best

or swarm’s average sample solution at iteration k. In these tests, we set (M,N) = (5, 10),

q = 0.4, and β = 2 unless otherwise is stated. Table 1 the first column shows the type of
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α

Strategy Parameter Open Facilities Objective Time(sec.)

Dynamic

4α=0.03 1,2,7,8,10 7,338 69.2
4α=0.05 1,2,4,8,10 7,218 64.8
4α=0.08 1,2,7,8,10 7,338 64.7
4α=0.10 1,2,7,8,10 7,338 61.1
4α=0.12 1,2,7,8,10 7,338 62.2
4α=0.15 1,2,7,8,10 7,338 59.2

Static

α=0.5 1,2,7,8,10 7,338 69.8
α=0.6 1,2,4,8,10 7,218 73.6
α=0.7 1,2,7,8,10 7,338 61.3
α=0.8 1,2,4,8,10 7,218 68.3
α=0.9 1,2,7,8,10 7,338 69.8
α=1 1,2,7,8,10 7,338 72.5

Exact Solution 1,2,4,8,10 7,218 �21,600

Table 1. Sensitivity of SIBSAA to social learning bias parameter (α) strategy and settings

social learning strategy, i.e., static and dynamic bias. The second column is the parameter of

the corresponding strategy, i.e., 4α for dynamic and α for static. Note that in the dynamic

strategy, we select initial value as αk=0 = 1. The first stage solutions and corresponding

objective function value is shown in columns third and fourth. Last column presents the

CPU time in terms of seconds. The exact solution is shown at the bottom row which took

longer than six hours.

First observation is that the SIBSAA is relatively insensitive to the strategy employed

and the parameter settings. In dynamic case, 4α = 0.05 identifies the optimal solution,

and the remainder parameter settings identify a similar solution except the facility 7 is

opened in place of facility 4. Further, as the 4α increases, the swarm’s best incumbent

solution becomes increasingly more important leading to decreased computational time.

Static strategy, similarly, identifies the exact solution when α = 0.6 and α = 0.8 and finds

the same near-optimal solution in other settings. The CPU time with static strategy is

variable and slightly higher than the dynamic strategy on the average. In comparison, the

dynamic strategy converges to a solution faster than the static strategy, e.g., average of

63.5 versus 69.2 seconds in Table 1, respectively. These results show that the SIBSAA’s

sensitivity to the α parameter strategy and settings is nominal.

Next, we tested the SIBSAA’s sensitivity with respect to the number of samples by

varying M from 3 to 20, while keeping the sample size same (N = 10). For brevity, we
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Figure 1. Effect of number of samples (M) on SIBSAA’s performance in the case of (a)
static strategy with α = 0.8, and, (b) dynamic strategy 4α = 0.05

illustrate only the results for dynamic strategy with 4α = 0.05 and static strategy with

α = 0.8. Remainder of the settings are taken as before.Figure 1 shows that increasing the

number of samples improves quality of the solution in both static and dynamic strategies.

Further, the SIBSAA algorithm is able to converge to the optimal solution even with small

number of samples, e.g., M = 5. While the CPU time increases with increasing number of

samples, this increase is linear in M and the CPU time performances of both strategies are

similar.
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Figure 2. Effect of the swarm learning parameter update (β) on SIBSAA’s performance in
the case of (a) static strategy with α = 0.8, and, (b) dynamic strategy 4α = 0.05

Lastly, we tested the sensitivity of the SIBSAA with respect to the swarm learning update

(β) using both the static and dynamic strategies of the swarm learning bias (Figure 2). In

the static strategy, increasing the swarm learning rate results in faster convergence but to an

inferior solution. In comparison, with dynamic strategy using4α = 0.05, the solution quality

first improves and then declines as the CPU time decreases (Figure 2b). This indicates an
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interaction between the swarm learning bias parameter and swarm learning update. While

the dynamic strategy can converge to a solution faster than the static strategy, the swarm

learning update and bias parameters need to be tuned jointly to ensure high solution quality.

Lastly, we note that as the bias parameter (4α) and the swarm learning update (β) increase,

the convergence rate increases. However, at the same time, the solution quality might

degrade as the best incumbent solution might not have improved sufficiently. Hence, a good

tuning strategy is to use high (low) β with low (high) 4α so in order to achieve fairly speedy

convergence to a good quality solution.

4.3. Computational Performance of SIBSAA

In this section, we compare the performances of the SAA and the proposed SIBSAA. In all

experiments, we use the same settings of β= 2 and static strategy for learning bias with

α= 0.8. In Figure 3, we present the CPU time and solution quality performance of the SAA

for N = {10, 25, 50} sample sizes and compare with that of the proposed SIBSAA with

N = 10 in solving CRFLP with failure probabilities q={0.2,0.4,0.6,0.8}. We use M = 5

samples in both methods. The results indicate that the sample size effect on the SAA’s

solution quality is varied. For instance, whereas the solution quality is non-monotone with

q = 0.2, it is monotone decreasing (increasing) with q = 0.4 and q = 0.6 (q = 0.8). In

none of the failure probability cases, however, the solution quality performance of SAA has

converged to that of SIBSAA’s. Further, in all cases, the CPU time of the SAA is growing

exponentially. For instance, with q = 0.4 and q = 0.6, the CPU time of SAA has grown

about 14 and 2 times that of the SIBSAA’s while a significant portion of the solution gap

still remaining.

We further analyzed the performance of the proposed SIBSAA with respect to that of the

exact method and the SAA method with different sample sizes (N) and number of samples

(M). Tables 2 and 3 illustrate these benchmark results for q={0.1,0.3,0.5,0.7}. The third

column, F*, indicates the solution converged by each method, e.g., facilities opened. For

instance, with q = 0.3, the SAA’s solution is to open facilities F*={2,4,5,8} whereas the

SIBSAA and exact solution open facilities F*={1,2,10}. Fourth column present the objective

function value (Obj.) for the SAA, SIBSAA and exact method, e.g., vSAA, vSIBSAA andv∗.

Fifth column, vM , is the average of the sample optimal objective functions for the SAA

method. The sixth and seventh columns display two optimality gap measures. The first

gap (GAP1) is only applicable for the SAA since it is based on the assumption that vM is a

statistical lower bound on the v∗. It is defined as,
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GAP1 =
vSAA − vM

vM
× 100%.
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Figure 3. Effect of sample size on the solution quality and CPU time performance of SAA
in comparison with SIBSAA for CRFLP with facility failure probabilities (a) q=0.2, (b)
q=0.4, (c)q=0.6, and (d) q=0.8.

The second gap (GAP2) is applicable to both the SAA and the SIBSAA, and uses the

optimal solution value v∗. It is defined as,

GAP2 =


vSAA−v∗

v∗
× 100% for SAA,

vSIBSAA−v∗
v∗

× 100% for SIBSAA.

Tables 2 and 3 show that, as the sample size increases, the SAA’s objective function is

not always monotonously decreasing while the CPU time is increasing exponentially. These

observations are in accordance with those in Figure 3. Note that the GAP1 is monotonously

decreasing since the effect of sampling variance on vSAA is compensated by vM . The negative

GAP1 values are due to the fact that vM is a “statistical” lower bound. In Table 2, with
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q = 0.1, we observe that SAA method finds the optimal solution in all M and N cases

except (M,N) = (5, 10) whereas the SIBSAA’s solution is always optimal. With q = 0.3,

the SIBSAA converged to the optimum solution in 125 seconds and the SAA’s average GAP2

and CPU time are 2.6% and 2, 062 seconds.

Method M-N F* Obj. CPU(s) GAP1(%) GAP2(%) F* Obj. CPU(s) GAP1(%) GAP2(%)

 5-10 1,2,4 4,401 4,194 4        4.9 1.8 2,4,5,8 6,576 5,695 12           15.5 7.0

 5-25 1,2,10 4,322 4,251 31     1.7 0.0 1,2,4,7 6,321 5,771 87           9.5 2.8

 5-50 1,2,10 4,322 4,345 181   -0.5 0.0 1,2,7,10 6,249 5,866 736         6.5 1.7

 10-10 1,2,10 4,322 4,122 11     4.9 0.0 2,4,5,10 6,521 5,624 23           16.0 6.1

 10-25 1,2,10 4,322 4,263 63     1.4 0.0 1,2,4,8 6,219 5,844 167         6.4 1.2

 10-50 1,2,10 4,322 4,336 340   -0.3 0.0 1,2,4,10 6,164 5,845 1,866     5.5 0.3

 15-10 1,2,10 4,322 4,129 18     4.7 0.0 2,4,5,10 6,521 5,628 27           15.9 6.1

 15-25 1,2,10 4,322 4,257 95     1.5 0.0 1,2,4,8 6,219 5,848 249         6.4 1.2

 15-50 1,2,10 4,322 4,319 487   0.1 0.0 1,2,4,10 6,164 5,740 2,949     7.4 0.3

 20-10 1,2,10 4,322 4,105 23     5.3 0.0 1,2,4,7 6,321 5,678 34           11.3 2.8

 20-25 1,2,10 4,322 4,216 134   2.5 0.0 1,2,4,8 6,219 5,845 309         6.4 1.2

 20-50 1,2,10 4,322 4,297 628   0.6 0.0 1,2,8,10 6,146 5,784 18,288   6.3 0.0

SIBSAA  5-10 1,2,10 4,322 - 48 - 0.0 1,2,8,10 6,146 - 125 - 0.0

Exact - 1,2,10 4,322 659 - - 1,2,8,10 6,146 - >21,600 - -

q=0.1 q=0.3

SAA

�
�

�
�
�
�

Table 2. Solution quality and CPU time performances of SAA and SIBSAA for CRFLP
with facility failure probabilities q = 0.1 and q = 0.3.

Table 3 results for q = 0.5 and q = 0.7 show that SAA is not able to find the optimum

solution. With q = 0.5, the SIBSAA converged to the optimum solution in 82 seconds and

the SAA’s average GAP2 and CPU time are 3.5% and 1,259 seconds. With q = 0.7, the

SIBSAA converged to the optimum solution in 43 seconds and the SAA’s average GAP2and

CPU time are 3.1% and 120 seconds. These results show that SIBSAA is able to find

better quality solutions in much less time than SAA. Table 4 presents the results for failure

probability q = 0.9. The SIBSAA converge to a solution with GAP2=0.1% in 6 seconds,

whereas the SAA’s average GAP2and CPU time are 1.2% and 7 seconds.

Figure 4 illustrates the effect of facility failure probability on the solution quality (GAP2)

and CPU time performance of SIBSAA with N = 10 in comparison with those of SAA with

N = 10, 25 and 50 scenarios. The SIBSAA is always outperforming the SAA in terms

of solution quality; the largest improvements are observed when the failure probability is

neither too low nor too high (Figure 4a). In Figure 4b, a semi-log plot, the CPU time

performance of SIBSAA is similar to that of SAA with N = 25 and significantly better

than N = 50. in comparison with SAA, the SIBSAA improves the solution quality with
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Method M-N F* Obj. CPU(s) GAP1(%) GAP2(%) F* Obj. CPU(s) GAP1(%) GAP2(%)

 5-10 1,2,3,4,5,7 9,206 7,710 4            19.4 6.6 1,2,4,7,10 13,307 9,594 3              38.7 3.1

 5-25 2,4,7,8,10 9,003 7,953 81         13.2 4.3 2,4,5,8,10 13,564 11,775 21           15.2 5.1

 5-50 1,2,7,8,10 8,746 8,397 1,953   4.2 1.3 1,2,4,6,7,10 13,282 12,461 114         6.6 2.9

 10-10 1,2,3,4,5,7 9,206 7,181 9            28.2 6.6 1,2,4,7,10 13,307 10,283 5              29.4 3.1

 10-25 1,2,3,7,10 8,997 7,742 119       16.2 4.2 1,2,3,8,9,10 13,441 11,776 46           14.1 4.2

 10-50 1,2,7,8,10 8,746 8,448 3,265   3.5 1.3 1,2,4,57,8,10 13,169 12,326 218         6.8 2.1

 15-10 2,5,7,8,10 9,100 7,322 13         24.3 5.4 1,2,4,7,10 13,307 10,349 8              28.6 3.1

 15-25 1,2,4,5,8 8,861 7,970 196       11.2 2.6 1,2,4,5,6,8 13,415 11,655 74           15.1 4.0

 15-50 1,2,7,8,10 8,746 8,312 4,163   5.2 1.3 1,2,3,7,8,10 13,141 12,116 365         8.5 1.8

 20-10 1,2,4,8,9 9,088 7,327 17         24.0 5.3 1,2,4,7,10 13,307 10,163 10           30.9 3.1

 20-25 1,2,4,7,8 8,811 7,875 256       11.9 2.1 1,2,4,7,10 13,307 11,670 97           14.0 3.1

 20-50 1,2,4,7,10 8,710 8,323 5,036   4.6 0.9 1,2,3,4,5,8,10 13,020 12,057 482         8.0 0.9

SIBSAA  5-10 1,2,4,8,10 8,634 - 82 - 0.0 1,2,4,7,8,10 12,903 - 43 - 0.0

Exact - 1,2,4,8,10 8,634 - >21,600 - - 1,2,4,7,8,10 12,903 - >21,600 - -

q=0.5 q=0.7

SAA

�
�

�
�

Table 3. Solution quality and CPU time performances of SAA and SIBSAA for CRFLP
with facility failure probabilities q = 0.5 and q = 0.7.

Method M-N F* Obj. CPU(s) GAP1(%) GAP2(%)

 5-10 2,3,8,10 20,891 17,012 0             22.8 2.2

 5-25 2,3,4,8 20,921 18,821 1             11.2 2.4

 5-50 2,4 20,589 19,506 2             5.6 0.7

 5-100 2,4,7 20,741 19,985 5             3.8 1.5

 10-10 2,3,8,10 20,891 17,201 1             21.5 2.2

 10-25 2,4, 20,589 19,294 2             6.7 0.7

 10-50 2,8 20,586 19,771 4             4.1 0.7

 10-100 2,8 20,586 20,132 10          2.3 0.7

 15-10 1,4,8 20,864 17,431 1             19.7 2.1

 15-25 2,4 20,589 18,999 3             8.4 0.7

 15-50 2,8 20,586 19,763 9             4.2 0.7

 15-100 2,10 20,561 20,065 18          2.5 0.6

 20-10 2,3,4 20,837 17,422 2             19.6 1.9

 20-25 2,8 20,586 18,924 4             8.8 0.7

 20-50 1,2,4,8 20,567 19,634 12          4.8 0.6

 20-100 1,2,8 20,482 20,025 34 2.3 0.2

SIBSAA  5-10 1,2,10 20,450 - 6 - 0.1

Exact - 1,2 20,439 - 239 - -

q=0.9

SAA

�
�

Table 4. Solution quality and CPU time performances of SAA and SIBSAA for CRFLP
with facility failure probability q = 0.9.

similar computational effort. Moreover, the computational effort necessary to attain the

same solution performance is much less with SIBSAA than SAA.
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Figure 4. Solution quality (a) and CPU time (b) comparison of SIBSAA and SAA with
different sample sizes (M) and failure probabilities (q).

5. Conclusion

We developed a hybrid method, SIBSAA, which integrates the swarm intelligence concept

of the PSO within the SAA methodology to efficiently solve the capacitated reliable facil-

ity location problems. This integration considers each sample solution as a particle in the

swarm and employs the SAA algorithm iteratively. In each iteration, the social learning is

injected into the solution process by introducing penalty terms in the objective that guides

the solution of each sample to the swarm’s balanced solution. The two key parameters of

SIBSAA are swarm’s learning bias and swarm’s learning parameter. The learning bias pa-

rameter adjusts the importance given to swarm’s best found solution and to the most recent

average sample solution in calculating the swarm’s balanced solution. The learning param-

eter modulates the rate at which the sample solutions converge to the swarm’s balanced

solution. Given that the swarm’s best found solution improves over time, we propose two

strategies for the bias parameter: static versus dynamic strategy.

We first conducted experiments for sensitivity analysis of the algorithm with respect to

the parameters as well as number of samples. The results show that the SIBSAA’s solution

quality performance is relatively insensitive to the choice of strategy for the swarm learning

bias parameter, i.e., both the static and dynamic strategies are able to converge to the

optimum solution. However, the dynamic strategy is slightly more computationally efficient

than the static strategy. Further, increasing the number of samples improves the solution

quality at a cost of linearly increasing computational effort. Lastly the SIBSAA is able

to converge to the optimal solution even with small number of samples. In addition to the

sensitivity experiments, we compared the performance of SIBSAA with SAA’s. These results

show that the SIBSAA is able to improve the solution quality noticeably with reasonable
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computational effort compared to SAA. Further, increasing SAA’s sample size to match the

solution quality performance of SIBSAA requires significant computational effort which is

not affordable for many practical instances of CRFLP.

There are three possible avenues of future research on SIBSAA. First opportunity is to

investigate the integration of alternative swarm intelligence mechanisms in order to improve

the convergence rate and solution quality. Another extension is to investigate the conditions

under which the dynamic strategy for swarm’s learning bias is more advantageous over the

static strategy. Lastly, the adaptation of the ideas of SIBSAA to multi-stage stochastic pro-

grams, e.g., reliable facility location over multiple periods, is another fruitful future research

avenue.
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APPENDIX: 

Figure A.1.  Routes for ten problem instances with depot located at LAX (single airport and alternative 

access airport policy) 
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Figure A.2.  Routes for ten problem instances with depot located at Compton (single airport and 

alternative access airport policy)  
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Figure A.3.  Routes for ten problem instances with depot located at LGB (single airport and alternative 

access airport policy) 
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