CENTER OF EXCELLENCE IN BIOMARKER RESEARCH & INDIVIDUALIZED MEDICINE (SCHOOL OF BRIM)

Student Learning Objectives (SLO's) MSBS Degree

Graduating students WILL BE ABLE TO:

1)     Describe mammalian and nonmammalian genome structure and function, including (for example): 

a) Coding/non-coding sequence distribution
b) Isochore structure
c) Repeated element distribution
d) Intron/exon structure and distribution
e) Distribution and dynamics of methylation
f) Transcription factor binding sites (for long- and short-range factors)

2)    Discuss the processes of genome evolution, including (for example): 

a) Mechanisms of mutation
b) Consequences and exploitation of SNPs
c) Fixation of mutations
d) Genetic drift
e) Phylogenetics
f) Major theories for the origin of novel genes
g) Nature and basis of codon bias

3)    Describe and use analytic tools associated with systems/bioinformatic approaches, including (for example): 

a) Transcriptomics – microarray analysis vs. deep sequencing
b) Proteomic mass spectroscopic methods (identification and abundance)
c) Determining statistical significance in large bioinformatic datasets
d) Determination and structure of interaction networks
e) Functional network maps 

4)    Carry out appropriate statistical analysis of sequence information, including (for example): 

a) Probabilistic methods
b) Deterministic methods
c) Machine learning methods, including Support Vector Machines (SVMs)
d) Cluster analysis

5)    Demonstrate competent use of existing bioinformatic and statistical software, including (for example): 

a) R statistical tools
b) Alignments and their interpretation
c) Phylogenetic analyses
d) Programs to predict genes and transcription factor binding sites
e) Programs to display, predict and analyze 3D biomolecule structures

6)    Develop and use basic PERL programs for bioinformatic analyses, including (for example): 

a) Familiarity with the UNIX operating system
b) Writing scripts for extracting information from databases
c) Creating databases
d) Interfacing with supercomputers

7)    Apply bioinformatic methods to clinical problems, by demonstrating understanding of: 

a) Biomarker discovery and validation
b) Major diseases such as cancer, diabetes, and autoimmunity

8)    Communicate competently both in writing and orally 

a) With fellow team members in research projects
b) With the broader scientific public

9)    Demonstrate familiarity with and adherence to research ethics.

Last Updated: 6/9/16