Welcome
Related Links
- Cardiovascular & Metabolic Diseases Graduate Program Track (CVMD)
- CeDER - Center for Diabetes and Endocrine Research
Contact Us
Health Science Campus
Block Health Science Building
2nd Floor, Room # 282
Phone: 419.383.4182
Fax: 419.383.2871
Elizabeth I. Tietz, Ph.D.
![]() |
Professor Emerita Telephone: (419) 383-4182, 383-4170 FAX: (419) 383-2871 e-mail: Liz.Tietz@utoledo.edu |
Training
- B.S., Psychology, 1976, University of Illinois, Champaign, IL
- M.A., Clinical Psychology, 1978, Xavier University, Cincinnati, OH
- Ph.D., Biopsychology and the Neuroscience Program, 1983, Wayne State University, Detroit, MI
Appointments
- Postdoctoral Research Fellow in Neuropharmacology, Department of Pharmacology, Medical University of Ohio, 1983-1985
- Instructor of Pharmacology and Therapeutics, Medical College of Ohio, 1984-1985
- Assistant Professor of Pharmacology and Therapeutics, Medical College of Ohio, 1985-1991
- Visiting Associate Professor of Neurology, University of Michigan College of Medicine, 1994-1995
- Associate Professor of Pharmacology and Therapeutics, Medical College of Ohio, 1992-1998
- Director, Cellular and Molecular Neurobiology Graduate Program, Medical College of Ohio, Health Science Campus, 2003-2007
- Director, Neurosciences and Neurological Disorders Track, Biomedical Sciences Graduate Program, 2007-2008
- Director, Toledo RISE in North American Program, German Academic Exchange Service, DAAD, 2009-present
- Director ASPET Zannoni SURF Program, 2010-2012
- Professor of Physiology and Pharmacology, University of Toledo College of Medicine (formerly Medical College of Ohio; Medical University of Ohio), Health Science Campus, 1998-present
- Vice-Chair, Department of Physiology and Pharmacology, University of Toledo College of Medicine, Health Science Campus, 2006-2011
- Professor, Department of Neurosciences, Joint Appointment, University of Toledo College of Medicine, Health Science Campus, 2010-present
- Professor Emerita, Department of Physiology and Pharmacology, and Department of Neurosciences, University of Toledo College of Medicine, Health Science Campus, 2012-present
Research Interests
Our NIDA funded research program has focused on the synaptic mechanisms of benzodiazepine (BZ) tolerance and physical dependence, forms of use-dependent synaptic plasticity. Chronic treatment of rats with BZs, positive allosteric modulators of GABA-A receptor (GABAR) function, results in a reduction of their anticonvulsant effectiveness which significantly limits their clinical usefulness and the appearance of withdrawal symptoms leading to BZ misuse and abuse. Using extracellular, intracellular and whole-cell approaches we have developed an in vitro hippocampal slice model to investigate the functional bases for BZ tolerance development and more recently BZ physical dependence which result in a altered signal transduction at inhibitory and excitatory hippocampal CA1 synapses, respectively.
Our electrophysiological studies related to BZ tolerance have shown that chronic BZ treatment has time-dependent effects to alter BZ and GABAR agonist potency and has profound effects on hippocampal GABAR-mediated inhibition in CA1 pyramidal cells. Additional molecular and immunohistochemical approaches have suggested structural changes in the GABAR. Specifically, the time-dependent regulation of specific alpha1- and beta3-containing GABAR subtypes may contribute to impaired GABA inhibition in CA1 pyramidal cells. These findings were lent support by functional studies of in vitro CA1 neuron tolerance to the alpha1 selective drug, zolpidem. A transient upregulation of alpha4 and alpha5 subunits was also detected. The rapid time-course of the effect of flumazenil, a BZ antagonist, to reverse both functional and structural correlates of BZ tolerance suggests that translational and post-translational mechanisms may each play interdependent roles in mediating BZ tolerance.
More recent cell-attached single channel analyses suggest that GABA suggest a marked reduction in channel opening frequency at low GABA concentrations in CA1 neuron patches from flurazepam-withdrawn rats compared to controls, consistent with a reduction in GABA affinity. These findings may to some extent explain the “silent” GABAergic synapses detected in this in vivo model. More recently we have shown that delayed reduction in GABAR function following BZ withdrawal might be related to activation of phosphorylation / dephosphorylation by increased intracellular Ca2+, consistent with the doubling of voltage-gated calcium channel current density described below.
Our functional and structural studies of excitatory amino acid receptor (EAAR) systems in this model suggest that bi-directional modulation of AMPA and NMDAR receptors in hippocampal CA1 neurons, contributes to expression/masking of anxiety-like behavior and thus contribute to BZ physical dependence. AMPA receptor (AMPAR)-mediated miniature (m)EPSC amplitude are increased in hippocampal CA1 neurons from 1-day (15-30%) and 2-day (30-50%) FZP-withdrawn rats, while NMDA receptor (NMDAR) currents were depressed by 50% in 2-day FZP withdrawn rats [8,9]. There was a significant positive correlation between the potentiation of AMPAR current amplitude and anxiety-like behavior measured in the elevated plus-maze in 1-day withdrawn rats, but anxiety was not observed 2-days after cessation of treatment. Preinjection of the AMPA antagonist 24 hours prior to behavioral testing and/or electrophysiological recording blocked potentiation of AMPAR currents and the appearance of anxiety. On the contrary, latent anxiety-like behavior was unmasked in 2-day FZP-withdrawn rats by systemic injection of the NMDA antagonist, which prevented the reduction in NMDAR, but not AMPAR currents. Collectively, these findings provide strong support for the hypothesis that BZ physical dependence, manifested as anxiety-like behavior, is related to the modulation of hippocampal glutamatergic neurotransmission, and the depression of NMDAR currents may serve as a natural break to alleviate anxiety.
Electrophysiological and immunohistochemical studies indicated that increased AMPAR-mediated neurotransmission was related to an increase in Ca2+-permeable GluR1 homomers reflected in a negative shift in rectification in the presence of spermine analogues and an increase in glutamate efficacy Confocal immunocytochemical studies and postembedding immunogold electron microscopic studies confirmed an increase in GluR1, but not GluR2 subunits at CA1 neuron asymmetric synapses. Findings to-date suggest that CA1 neuron AMPAR potentiation during BZ withdrawal involves a two-step process, GluR1 homomer incorporation followed by CaMKII-mediated Ser831GluR1 phosphorylation. CaMKII-mediated phosphorylation of GluR1 subunits may serve as a common final pathway for promoting both activity-dependent plasticity and drug-induced adaptations at CA1 pyramidal neuron synapses associated with BZ physical dependence.Initial findings indicate a decrease in ifenprodil-sensitive NR2B-mediated currents along with a decrease in NR1 and NR2B, but not NR2A subunits at CA1 synapses of 2-day FZP-withdrawn rats is responsible for the depression of NMDA function. However, unlike with models of activity-dependent plasticity such as LTP, L-VGCCs, rather than NMDARs may be responsible for initiating Ca2+-mediated signaling mechanisms associated with AMPAR potentiation since, prior injection with the L-type voltage-gated (L-VGCC) antagonist, nimodipine, also prevented AMPAR potentiation and anxiety, (as well as changes in GABA-A receptor dysfunction) consistent with a doubling of high voltage-activated calcium channel current density in CA1 neurons immediately and up to 2-days after FZP withdrawal.
We are currently evaluating the role of multiple sources of Ca2+ entry in the regulation of inhibitory and excitatory synapses associated with chronic drug treatment and withdrawal.
Representative Publications
- Earl D.E., Das, P., Gunning III, W.T. and Tietz, EI. (2012) Regulation of Ca2+/calmodulin-dependent protein kinase II signaling within hippocampal glutamatergic postsynapses during flurazepam withdrawal. Neural Plasticity, Special Edition, Maladaptive Plasticity in Neurological Diseases, 405926.
- Xiang, K., Earl, D., Dwyer, T., Behrle, B.L., Tietz, E.I., Greenfield, Jr., L.J. (2012) Hypoxia enhances high-voltage-activated calcium currents in rat primary cortical neurons via calcineurin. Epilepsy Res. May;99(3):293-305.
- Earl, D.E. and Tietz, E.I. (2011) Inhibition of recombinant L-type voltage-gated calcium channels by positive allosteric modulators of γ-aminobutyric acid type A receptors. J Pharmacol Exp Ther., 337:301-311.
- Shen, G and Tietz, E.I. (2011) Downregulation of synaptic GluN2B subunit-containing NMDA receptors: A physiological brake on CA1 neuron AMPAR hyperexcitability during benzodiazepine withdrawal. J. Pharmacol. Exp. Ther., 336: 265-273, 2011.
- Das, P., Zerda, R., Alvarez, F.J., Tietz, E.I. (2010) Immunogold electron microscopic evidence of differential regulation of GluN1, GluN2A and GluN2B, NMDA-type glutamate receptor subunits in rat hippocampal CA1 synapses during benzodiazepine withdrawal. J. Comp. Neurol, 518: 4311-4328.
- Shen, G., Van Sickle, B.J., Tietz, E.I. (2010) Calcium/calmodulin dependent protein kinase II mediates hippocampal AMPAR plasticity during BZ withdrawal. Neuropsychopharmacology, 35:1897-1909.
- Shen, G., Mohamed, M.S., Das, P., Xiang, K. and Tietz, E.I. (2009) Positive allosteric activation of GABAA receptors bi-directionally modulates hippocampal glutamate plasticity and behavior. Biochem Soc Trans, 37:1394-1398.
- Xiang, K., Earl, D.E. Davis, K. Giovannucci, D.R., Greenfield, Jr., L.J. and Tietz, E.I. (2008) Chronic benzodiazepine administration potentiates high voltage-activated calcium currents in hippocampal CA1 neurons. J. Pharmacol. Exp. Ther. 327(3):872-883.
- Xiang, K. and Tietz, E.I. (2008) Chronic benzodiazepine-induced reduction in GABAA receptor-mediated synaptic currents in hippocampal CA1 pyramidal neurons prevented by prior nimodipine injection. Neuroscience 157:153-163.
- Das, P., Lilly, S.M., Zerda, R. Gunning, W.F., III, Alvarez, FJ, and Tietz, E.I. (2008) Increased AMPA receptor GluR1 subunit incorporation in rat hippocampal CA1 synapses during benzodiazepine withdrawal. J. Comp Neurol. 511:832-846.
- Xiang, K., and Tietz, E.I. (2007) Benzodiazepine-induced hippocampal CA1 neuron AMPA receptor plasticity linked to severity of withdrawal-anxiety: Differential role of voltage-gated calcium channels and NMDA receptors, Behavioural Pharmacology, Special Issue: Behav. Pharmacol. 18(5-6):447-460.
- Song, J., Shen, G., Greenfield, L.J., and Tietz, E.I. (2007) Benzodiazepine withdrawal-induced glutamatergic plasticity involves up-regulation of GluR1-containing alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid receptors in hippocampal CA1 neurons. J. Pharmacol. Exp. Ther. 322(2):569-581. Epub 2007 May 17.
- Lilly, S.M., Alvarez, F.J., and Tietz, E.I. (2005) Synaptic and subcellular localization of a-kinase anchoring protein 150 in rat hippocampal CA1 pyramidal cells: Co-localization with excitatory synaptic markers. Neuroscience 134:155-163.
- Van Sickle, B.J., Xiang, K., and Tietz, E.I. (2004) Transient plasticity of hippocampal CA1 neuron glutamate receptors contributes to benzodiazepine withdrawal anxiety. Neuropsychopharmacology 29:1994-2006.
- Lilly, S.M. and Tietz, E.I. (2003) Role of protein kinase A in GABA-A receptor dysfunction in CA1 pyramidal cells following chronic benzodiazepine treatment. J. Neurochem. 85:988-998.
- Van Sickle, B.J. and Tietz, E.I. (2002) Selective enhancement of AMPA receptor function in hippocampal CA1 neurons from chronic benzodiazepine-treated rats. Neuropharmacology 43:11-27.
- Van Sickle, B.J., Cox, A.S., Schak, K., Greenfield, Jr., L.J., and Tietz, E.I. (2002) Chronic benzodiazepine administration alters hippocampal CA1 neuron excitability: NMDA receptor function and expression. Neuropharmacology 43:595-606.
- Lilly S.M. and Tietz E.I.(2000) Chronic cocaine differentially affects diazepam’s anxiolytic and anticonvulsant actions: Relationship to GABA-A receptor subunit expression. Brain Research 882:139-148.
- Zeng X.J. and Tietz, E.I.(2000) Role of bicarbonate ion in mediating decreased synaptic conductance in benzodiazepine tolerant hippocampal CA1 pyramidal neurons. Brain Research 868:202-214.
- Tietz, E.I., Huang, X., Chen, S., and Ferencak, W. (1999) Temporal and regional regulation of alpha1, alpha2 and alpha3, but not alpha2, alpha4, alpha5, alpha6, beta1 or gamma2 GABA-A receptor subunit mRNAs following one week oral flurazepam administration. Neuroscience 91:327-341.
- Zeng, X. and Tietz, E.I. (1999) Benzodiazepine tolerance at GABAergic synapses in the hippocampal CA1 pyramidal cell region. Synapse 31:263-277.
- Tietz, E.I., Kapur, J. and Macdonald, R.L. (1999) Functional GABA-A receptor heterogeneity of acutely dissociated hippocampal CA1 pyramidal cells. J. Neurophysiol. 81:1575-1586.
- Chen, S., Huang, X., Zeng, X.J., Sieghart, W., and Tietz, E.I. (1999) Benzodiazepine-mediated regulation of alpha1, alpha2, beta1-3 and gamma2 GABA-A receptor subunit proteins in the rat brain hippocampus and cortex. Neuroscience 93:33-44.
- Tietz, E.I., Zeng, X.J., Chen, S., Lilly, S., Rosenberg, H., and Kometiani, P. (1999) Antagonist-induced reversal of functional and structural measures of hippocampal benzodiazepine tolerance. J. Pharmacol. Exp. Ther. 291:932-942.
- Zeng, X. and Tietz, E.I. (1997) Depression of early and late monosynaptic inhibitory postsynaptic potentials in hippocampal CA1 neurons following chronic benzodiazepine administration: Role of a reduction in Cl- driving force. Synapse 25:125-136.
- Burgard, E.C., Tietz, E.I., Neelands, T.R. and Macdonald, R.L. (1996) Properties of recombinant gamma-aminobutyric acid type A receptor isoforms containing the alpha-5 subunit. Mol. Pharmacol. 50:119-127.
- Huang, X., Chen, S. and Tietz, E.I. (1996) Immunocytochemical detection of regional protein changes in rat brain section using computer-assisted image analysis. J. Histochemistry and Cytochemistry 44:981-987.
- Zeng, X., Xie, X.-H. and Tietz, E.I. (1995) Reduction of GABA-mediated IPSPs in hippocampal CA1 pyramidal neurons following oral flurazepam administration. Neuroscience 66:87-99.
- Tietz, E.I., Huang, X., Weng, X., Rosenberg, H.C. and Chiu, T.H.(1994) Expression of alpha1, alpha5 and gamma2 GABA-A receptor subunit mRNAs in rat hippocampus and cortex following chronic flurazepam treatment. J. Molec. Neurosci. 4:277-292.
- Xie, X-H. and Tietz, E.I. (1992) Selective GABA-A agonist subsensitivity and benzodiazepine tolerance in CA1 region of in vitro hippocampal slices from chronic flurazepam treated rats. J. Pharmacol. Exp. Ther. 262:204-211.
UT Virtual View Book
UT Rockets
A University Rising
UTMC Named Regions #1 Hospital
