Medical Microbiology and Immunology



Additional Information

Contact Us

Health Science Campus
Health Education Building
Medical Microbiology and Immunology
Room 229, MS1021
Office: 419-383-4323
Fax: 419-383-3002

Departmental Faculty

Primary Faculty Research Interests

Faculty and Staff

*All primary faculty can serve as major advisors for doctoral and master's degree students

Robert M. Blumenthal, Ph.D. – Distinguished University Professor – Dr. Blumenthal’s research explores two main questions. First, how do bacteria control and coordinate the expression of their thousands of genes, and how is that regulatory architecture conserved or changed between different bacterial species? His lab is particularly interested in Lrp, a widely-distributed protein that (in E. coli) controls hundreds of genes, including genes associated with virulence. Second, what is the full role of restriction-modification systems (RMSs) in controlling the flow of genes among different bacteria? Almost all bacteria have RMSs and, while they can cut incoming DNA, there is evidence that this can actually increase gene exchange (possibly including antibiotic resistance genes).

Saurabh Chattopadhyay, Ph.D. – Assistant Professor – Dr. Chattopadhyay’s laboratory is interested in studying the host responses against virus infections both in cells and mice. The interferon system has been recognized as a major host defense mechanism against a broad range of viruses. Dr. Chattopadhyay is investigating how a key transcription factor IRF3 and the induced genes (ISGs) mount antiviral protection. Using both RNA (e.g. Paramyxoviruses) and DNA (e.g. Herpesviruses) viruses, the important human pathogens, Dr. Chattopadhyay is interested to uncover novel host response mechanisms to protect against them. Identification of new antiviral strategies will lead to the development of successful therapeutic applications.

Viviana P. Ferreira, D.V.M., Ph.D. - Associate Professor - Dr. Ferreira’s research aims to understand the regulatory mechanisms by which humans protect their tissues from excessive, inadvertent or bystander complement-mediated damage. The complement system is a central part of our innate defense system, is an essential link between innate and adaptive immunity, and carries out critical housekeeping functions. Although tightly regulated, it also contributes to the origin of many inflammatory diseases. In order to contribute to understanding of the role of complement in inflammatory cardiovascular disease, current projects aim to define how negative regulator factor H and positive regulator properdin influence the interaction between human platelets and leukocytes.

Jason F. Huntley, Ph.D. – Associate Professor – Dr. Huntley’s laboratory studies bacterial virulence factors and uses this information to develop vaccines. The main focus of the Huntley lab is Francisella tularensis, a highly-infectious bacterium that causes the deadly disease tularemia. Little is known about how F. tularensis causes disease or why the host immune system fails to control infection by these bacteria.  Currently-funded projects include:  (1) Studying F. tularensis surface protein expression during infection and identify key virulence factors;  (2) Developing and testing new vaccines to prevent F. tularensis infection and disease;  (3) Assessing immune responses to vaccination and F. tularensis infection to guide improved vaccine formulations.

Jyl Matson, Ph.D. - Assistant Professor - Dr. Matson’s laboratory studies the mechanisms by which bacteria sense and respond to their extracellular environment. Vibrio cholerae causes epidemic cholera, a disease that continues to spread where people lack access to clean drinking water. Due to increasing antibiotic resistance in V. cholerae, there is a need for additional therapeutic agents. Current projects include 1) identification and characterization of small molecule inhibitors of a V. cholerae stress response pathway that may be developed into cholera therapeutics; and 2) characterizing transcriptional responses of V. cholerae to various stresses to determine pathways associated with bacterial fitness and pathogenesis.

Kevin Pan, M.D., Ph.D. - Professor and Interim Chairman - The main research interest of Dr. Pan's laboratory is to better understand the molecular basis of inflammatory diseases and further develop novel therapeutic strategies. In particular, his laboratory focuses on the following areas: inducible negative regulation of inflammatory responses; the host/pathogen interactions that lead to the development of several inflammatory diseases, including septic shock, rheumatoid arthritis, and airway inflammation.

Dorothea L. Sawicki, Ph.D. - Professor - Dr. Sawicki's research effort was directed toward determining the molecular mechanisms governing RNA synthesis by viruses. The systems studied utilized the alphaviruses Sindbis and Semliki Forest viruses and coronaviruses. The alphaviruses as well as other Togaviruses are of interest because they produce disease in a variety of animals, including humans, and because they replicate in invertebrate as well as vertebrate animals. She is now serving as a Vice-Provost for Health Science Affairs and University Accreditation.  

Stanislaw Stepkowski, DVM, Ph.D., D.Sc. - Professor - Dr. Stepkowski's research focuses on the development of novel strategies: 1) to improve the survival of organ allografts, with emphasis on non-toxic immunosuppressive agents; 2) to induce permanent acceptance of allografts (transplantation tolerance); and 3) to increase survival of pancreatic islets.  His laboratory seeks to better understand cytokine-induced T cell signaling through Janus tyrosine kinases (Jaks) and signal transducers and activators of transcription (Stats) pathways.  Ongoing work aims to identify novel regulatory phosphotyrosine sites in Jak3, using knock-in mice with mutated Jak3 sites.  The role of Stat3 and Stat 5a/b transcription factors are explored in Stat3 and Stat5 conditional knockouts.

R. Travis Taylor, Ph.D. - Assistant Professor - Dr. Taylor’s research is focused on the vector-borne members of the Flaviviridae family, including West Nile virus, dengue virus and tick-borne encephalitis virus. Flaviviruses are significant human pathogens and we currently have limited treatment options. By evaluating interactions of virus and cellular proteins, Dr. Taylor has identified key host proteins that are important to antiviral responses. Understanding the molecular mechanism of host responses, as well as strategies employed by viruses to evade them, is crucial to future work in the lab aimed at developing new and effective flavivirus-specific therapies. 

R. Mark Wooten, Ph.D. – Professor– Dr. Wooten’s research focuses on the immune responses to bacterial infections, with primary focus on Borrelia burgdorferi (Lyme disease) and Burkholderia pseudomallei (melioidosis).  His lab has developed intravital techniques using laser-confocal microscopy, that allow direct visualization of fluorescent B. burgdorferi within intact skin tissues of living mice, in order to study their interactions with fluorescent immune cell populations in real time.  For B. pseudomallei, they are assessing how the polysaccharide capsule prevents complement deposition and subsequent killing by macrophages and neutrophils.  The goals are to identify bacterial mechanisms that allow evasion of immune clearance, which may provide targets for preventative and/or curative therapies. 

Randall G. Worth, Ph.D. – Associate Professor – Dr. Worth's laboratory investigates the role of platelets in inflammation and infection. At a basic science level, they are identifying pathways involved in pathogen destruction by platelets. To do this, they have engineered a transgenic mouse strain capable of conditional platelet depletion. When mice are depleted of platelets, responses against infectious agents can be studied. Dr. Worth also heads a translational project directed at understanding the interaction between inflammation and thrombosis. Specifically, they study the role of platelets in such autoimmune diseases as Systemic Lupus Erythematosus. This project is revealing exciting new ways that platelets respond to IgG-complexes during disease.

Downloadable PDF of Faculty Brochure

Joint & Volunteer Faculty Appointments
Nezam Altorok, M.D.

Associate Professor
Division of Rheumatology
Department of Medicine - Health Science Campus
Joint Appointment

Joan M. Duggan, M.D.
Medicine and Physiology & Molecular Medicine Division, Infectious Diseases
Department of Medicine - Health Science Campus
Joint Appointment

Brian Harrington, Ph.D., M.P.H.
HSC Public Health, Homeland Security
Joint Appointment

M. Bashar Kahaleh, M.D.2
Chief, Division of Rheumatology
Department of Medicine - Health Science Campus
Joint Appointment

Richard W. Komuniecki, Ph.D.
Joan L. and Julius H. Professor of Biomedical Research
Distinguished University Professor
Department of Biological Sciences - Main Campus
Joint Appointment

Matam Vijay-Kumar, Ph.D.
Associate Professor,  Department of Physiology and Pharmacology
Director, The University of Toledo-Microbiome Consortium (UT-MiCo)
Joint Appointment 

Qing-Sheng Mi, M.D., Ph.D.
Henry Ford Health System
Director of Research, Department of Dermatology
Director, Henry Ford Hospital Immunology Program
Volunteer Appointment

Deepa Mukundan, M.D.2
Assistant Professor
Division of Pediatric Infectious Diseases and Immunology
Department of Pediatrics - Health Science Campus
Joint Appointment

Thomas J. Papadimos, M.D., MPH
Department of Anesthesiology
Joint Appointment

Michael A. Rees, M.D., Ph.D.1,2
Director, Renal Transplantation and Kidney Paired Donation
Department of Urology - Health Science Campus
Joint Appointment

Hermann von Grafenstein, M.D., Ph.D.2
Associate Professor
Departments of Pharm.-Med/Bio Chem. - Main Campus
Joint Appointment


1Faculty members who may serve as major advisors or members of student advisory committees.

2Faculty members who may serve as advisory committee members for doctoral students or primary advisors for master's degree students.


                                                         Return to Medical Microbiology and Immunology Page


Last Updated: 3/22/18