Department of Chemistry and Biochemistry

Faculty

Jared L. Anderson
J_AndersonProfessor 
Email: Jared.Anderson@utoledo.edu
Office: WO 2268
Phone: (419) 530-1508
Fax: (419) 530-4033

Professional Background:
B.S., 2000, South Dakota State University
Ph.D., 2005, Iowa State University

Research Group Page

Publications

Patents

Google Scholar Citations

Prof. Anderson included in The Analytical Scientist Power List 2014

Research Synopsis:
Research within the Anderson Group focuses on all areas of separation science and sample preparation. We are specifically interested in employing and understanding the role that ionic liquids (ILs) and polymeric ionic liquids (PILs) play in chromatographic separations and sample preparation, particularly microextraction-based techniques. In addition, we are interested in synthesizing new classes of ILs and PILs for targeted applications within the fields of analytical and bioanalytical chemistry.  Since the majority of the IL/PIL materials we employ in our studies are not readily commercially available, developing synthetic approaches to produce these materials is a major thrust within our group.  The Anderson Group collaborates with a number of academic research groups in Europe, South America, North America, and Asia.  We also work closely with numerous industrial collaborators, including Agilent Technologies and Genentech, as we strive to develop separation/sample preparation methodologies that can solve challenging problems within the pharmaceutical industry.  Research in the Anderson Group is currently supported by grants from the National Science Foundation and Agilent Technologies.

Below is a highlight of four major areas of study within the research group:

1.  Synthesis and application of magnetic ionic liquids in sample preparation:

Magnetic ionic liquids (MILs) are an intriguing class of ILs comprised of magneto-active anions or cations.  MILs exhibit paramagnetic behavior under an applied external magnetic field.  This can be observed in the video below in which a 0.9 Tesla magnet is used to manipulate a MIL microdroplet within an aqueous sample.  By exploiting synthetic chemistry, we have succeeded in developing MILs that exhibit low miscibility in water while also retaining sufficient magnetic susceptibility.  Currently, we are interested in developing additional classes of MILs that can be used for the selective extraction of analytes in complex environmental and biological samples. 

 Magnetic ionic liquid single droplet extraction

2.  Developing analytical tools and methodologies for the analysis of genotoxic impurities in active pharmaceutical ingredients:

We are interested in addressing various analytical challenges that are currently facing the  pharmaceutical industry.  Most recently, we have collaborated extensively with Genentech to develop contemporary and practical analytical methods to quantify genotoxic impurities (GTIs) at trace-level concentrations. GTIs are compounds that can induce genetic mutations, chromosomal breaks, and/or chromosomal rearrangements in humans. Additionally, these compounds can also exhibit potential carcinogenic activity. The United States Food and Drug Administration (FDA) and the European Medicines Agency (EMA) have imposed stringent regulations on the amount of GTIs present in pharmaceuticals. Depending on the dose and duration of exposure, the allowable daily intake (ADI) can be as low as 1.5 μg/day, which in perspective, would be translated to low parts-per-million (ppm) or sub-ppm concentration ranges of GTIs in drug substances.  This highly conservative threshold also applies to pharmaceutical impurities containing structurally alerting functional groups that may possess genotoxic activity. Although GTIs that enter human body may come from drug substances, excipients, degradants, or metabolites, the major source of GTIs is usually active pharmaceutical ingredient (API) manufacturing, which may require the use of genotoxic reagents, solvents, and catalysts.  Thus, monitoring the presence of various GTIs in drug substances is of great importance for the pharmaceutical industry.

In a recent collaboration with Genentech, we applied a number of thermally-stable ILs as diluents in the trace-level analysis of two classes of GTIs, namely, alkyl/aryl halides and nitroaromatic compounds, by static headspace gas chromatography coupled to electron capture detection (SHS-GC/ECD).  This approach greatly broadens the applicability of SHS-GC for the determination of high boiling GTIs (≥ 130°C) and provides up to a 4000-fold improvement in limits of detection compared to traditional SHS-GC diluents.  Optimization of the incubation temperature (up to 210 °C) resulted in varying response for alkyl/aryl halides and enhanced response for nitroaromatic compounds. Excellent recoveries of all GTIs at low ppm-levels were obtained from real APIs.

3.  Design of polymeric ionic liquid-based sorbent coatings for solid-phase microextraction:

Solid-phase microextraction (SPME) is a popular sample preparation technique that involves the preconcentration of analytes from a variety of matrices, often without the need for sample pre-treatment. Our group has been focusing on the practical and fundamental aspects of SPME, particularly in the development of highly selective sorbent coatings using polymeric ionic liquids (PILs). The ability to alter the chemical composition of these materials by the means of synthesis or by employing different cation/anion combinations has produced coatings that exhibit superior selectivity for target analyte(s) in various sample matrices.

We recently developed an on-fiber UV co-polymerization route to chemically immobilize crosslinked PILs on various SPME supports. The method requires no organic dispersive solvent and is much more rapid compared to traditional SPME fiber preparation methods. Additionally, the crosslinked PIL-based SPME coatings possess excellent thermal and mechanical stability, and are applicable in both headspace and direct-immersion SPME. In one application, polar crosslinked PIL-based SPME coatings were developed for the extraction of polar analytes from complex water samples. Excellent analytical performance and good recovery of these analytes can be obtained using these novel coatings, even after multiple direct-immersion experiments. We are also studying PIL-based bucky gel sorbent coatings in which single-walled carbon nanotubes (CNTs) have been successfully dispersed within the IL prior to free-radical polymerization (see figure below). The high surface area, high mechanical strength, and high thermal stability of CNTs make them particularly attractive when making PIL-hybrid coatings for SPME. Compared to the neat PIL-based sorbent coating, the PIL bucky gel sorbent coatings demonstrated higher extraction efficiency for polycyclic aromatic hydrocarbons.  On-going work in our lab is focused on using SPME as a platform to study the way in which molecules interact with carbon nanotubes.

PIL bucky gel

SEM image showing the cross-section of the PIL-based bucky gel
coating and surface morphology of the dispersed
carbon nanotubes within the polymeric matrix (inset image)

4.  Developing high stability and selective ionic liquid-based stationary phases for comprehensive two-dimensional gas chromatography:

Multidimensional gas chromatography (MDGC) is an extremely valuable tool for the separation, detection, and identification of volatile and semi-volatile constituents in many complex samples. A typical MDGC separation employs two or more gas chromatographic separations in a sequential fashion. In order to achieve a significant improvement in resolution power, the stationary phases employed often possess different selectivities. Until recently, commercial poly(siloxane)- and poly(ethylene glycol)-based stationary phases have been widely applied in MDGC separations. However, their solvation characteristics and thermal stabilities are often limited for particular classes of compounds, such as those complex mixtures often found in the petrochemical industry.

Using the Abraham solvation parameter model as a guiding tool in the structural design of ILs, we have developed low cohesive phosphonium-based IL stationary phases for comprehensive two-dimensional gas chromatography (GC×GC).  These new statationary phases were used for the first time as the second dimension column (HP-5 × IL) in the separation of aliphatic hydrocarbons in kerosene. These compounds were the first reported class of ILs that were capable of resolving the aliphatic hydrocarbons (see chromatograms below) while also possessing high thermal stabilities (up to 320°C).  On-going studies within the group are focused on understanding the structural attributes of the IL that provide the observed enhanced selectivity and using this knowledge in the development of new classes of stationary phases for applications within the petrochemical, flavors and fragrance, and pharmaceutical industries.         

GC x GC chromatograms
Two-dimensional contour plots representing a GC×GC separation of kerosene using various column sets.  (A) [Rtx-5 × SupelcoWax 10]; (B) [Rtx-5 × (P,6,6,6,14)(FAP) IL]; (C) [Rtx-5 × (C4MIM)(MeSO4) IL]; and (D) [Rtx-5 [Rtx-5 × (C4MIM)(FeCl4) IL].  The low cohesive forces of the IL in (B) provide high resolution of the aliphatic hydrocarbons while possessing a 40°C higher thermal stability than the commercial SupelcoWax column. The IL stationary phases in (C) and (D) provide very poor separation of the aliphatic hydrocarbons due to lacking solvation characteristics.                         



                                                                                  

Last Updated: 6/26/15