The major facilitator superfamily member Slc37a2 is a novel macrophage-specific gene selectively expressed in obese white adipose tissue

Ji Young Kim, Kristin Tillison, Shengli Zhou, Yu Wu and Cynthia M. Smas

You might find this additional info useful...

This article cites 58 articles, 20 of which can be accessed free at:

http://ajpendo.physiology.org/content/293/1/E110.full.html#ref-list-1

Updated information and services including high resolution figures, can be found at:

http://ajpendo.physiology.org/content/293/1/E110.full.html

Additional material and information about *AJP - Endocrinology and Metabolism* can be found at:

http://www.the-aps.org/publications/ajpendo

This information is current as of October 21, 2011.
The major facilitator superfamily member Slc37a2 is a novel macrophage-specific gene selectively expressed in obese white adipose tissue

Ji Young Kim, Kristin Tillison, Shengli Zhou, Yu Wu, and Cynthia M. Smas

Department of Biochemistry and Cancer Biology, Medical University of Ohio, Toledo, Ohio

Submitted 8 August 2006; accepted in final form 12 March 2007

Kim JY, Tillison K, Zhou S, Wu Y, Smas CM. The major facilitator superfamily member Slc37a2 is a novel macrophage-specific gene selectively expressed in obese white adipose tissue. Am J Physiol Endocrinol Metab 293: E110–E120, 2007. First published March 13, 2007; doi:10.1152/ajpendo.00404.2006.—A marked degree of macrophage infiltration of white adipose tissue (WAT) occurs in obesity and may link excess adiposity with the chronic inflammatory state underlying metabolic syndrome and other comorbidities of obesity. Excess deposition of fat in the intra-abdominal vs. subcutaneous WAT depots is a key component of metabolic syndrome. Through construction and differential screening of a murine ob/ob WAT cDNA library, we identified Slc37a2, a novel sugar transporter of the major facilitator superfamily, to be twofold enriched in intra-abdominal vs. subcutaneous fat. We find Slc37a2 is a macrophage-enriched transcript. In murine tissues, Slc37a2 transcript is restricted to spleen, thymus, and obese WAT. It is also readily detected in the RAW264.7 macrophage cell line and increases 46-fold during macrophage differentiation of THP-1 human monocytes. Compared with wild-type mice, Slc37a2 transcript is increased epididymal ninefold in ob/ob WAT and assessment of expression of the macrophage marker emr1 indicated upregulation of Slc37a2 transcript in macrophages populating ob/ob WAT. Studies with PNGase F and tunicamycin reveal the Slc37a2 protein is posttranslationally modified by addition of N-linked glycans. Slc37a2 protein migrates as heterogeneous species of ~50–75 kDa and its ectopic expression in mammalian cells results in the appearance of large intracellular vacuoles. We postulate that the function of this macrophage-specific putative sugar transporter is central to the metabolism of the macrophage population specifically present in obese WAT.

WHITE ADIPOSE TISSUE (WAT) is recognized to have multiple functions that are not only related to the storage of excess energy intake and its mobilization but also the secretion of hormones and adipokines (2, 13, 21, 29). Obesity is related to a number of health risks including insulin resistance, type 2 diabetes, cardiovascular disease, and some types of cancers (1, 12, 57). Studies to date indicate that different WAT depots evidence distinctions in, for example, gene expression and lipolytic response, among others (16, 27, 34, 35, 42, 50, 52–55). A relationship between the regional distribution of body fat and the comorbidities of obesity has recently been recognized. Intra-abdominal adiposity correlates with obesity-associated disorders, for example the metabolic syndrome, to a higher degree than the accumulation of fat in the subcutaneous WAT depots (7, 27). Interventions that target reduction of intra-abdominal fat mass effectively combat obesity-related diseases (24).

WAT is a heterogeneous organ with adipocytes estimated to comprise two-thirds of the WAT cell population; the remaining cell types consist of fibroblast-like cells, endothelial cells, nerve cells, preadipocytes, macrophages, and presumably other as yet unspecified cell types (3). The definition of obesity as a disease of chronic inflammation has recently come to prominence (9, 39, 44, 58). The contribution of adipose tissue macrophages to this chronic inflammatory state is underscored by the now well-described secretory/endocrine function of adipose tissue. Adipocytes have been demonstrated to produce a range of local and/or systemic inflammatory mediators such as TNF-α and monocyte chemoattractant protein (MCP-1) and other factors (2, 19, 21, 25, 30, 47). Additionally, several lines of experimental data point to a very close phenotypic relationship between cells of the adipocyte lineage, i.e., preadipocytes and adipocytes, with macrophages (17, 22). Nonetheless, a somewhat unanticipated discovery was the magnitude to which obese WAT is subject to macrophage infiltration (1, 23, 25, 38, 56, 57, 59); it has been reported that such macrophages migrate from the bone marrow (56). Macrophages in adipose tissue are described to be in close proximity to apoptotic and/or dead adipocytes (20). Thus it is increasingly apparent that macrophages that are recruited to populate WAT play a key role in the type of chronic inflammatory state present in obesity (9, 15, 28, 39, 44, 45, 58). Importantly, interventions that decrease the degree of WAT macrophage infiltration may be effective at attenuating obesity-associated inflammation (8, 10, 14, 19, 25, 51).

In this study, we used the ob/ob genetically obese mouse model to identify gene expression distinctions between intra-abdominal epididymal (EP) and subcutaneous (SC) fat depots by construction and differential screening of a WAT-suppressive subtractive hybridization (SSH) cDNA library. We demonstrate that Slc37a2, a novel sugar transporter member of the major facilitator superfamily, evidences increased transcript expression in intra-abdominal EP vs. SC WAT depots. Furthermore, our findings indicate that among murine tissues, Slc37a2 transcript expression is restricted to the macrophage lineage and that this transcript evidences particularly enriched expression in ob/ob WAT. We propose that the Slc37a2 sugar transporter may perform a function that is integral to the metabolism of those macrophages that populate WAT in obesity.

METHODS AND PROCEDURES

RNA preparation and Northern blot analysis. RNA was purified using TRIzol reagent (Invitrogen, Carlsbad, CA) according to the

The costs of publication of this article were defrayed in part by the payment of page charges. The article must therefore be hereby marked “advertisement” in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.
Slc37a2 expression in obese adipose tissue

E111

manufacturer’s instructions. For studies of Slc37a2 transcript expression in murine tissues, 8-wk-old C57BL/6 or ob/ob male mice were utilized. All animal use was with the approval of the Medical University of Ohio Institutional Animal Care and Use Committee. For Northern blot analysis, 5 μg of RNA were fractionated in 1% agarose-formaldehyde gels in MOPS buffer and transferred to Hybond-N membrane (GE Healthcare, Piscataway, NJ). Blots were hybridized in ExpressHyb solution (BD Biosciences Clontech, Palo Alto, CA) for 1 h at 65°C with the indicated random primed 32P-labeled cDNA probes. After being washed for 20 min at 65°C in 1% SDS/0.1× SSC and for 30 min at 65°C in 0.1% SDS/0.1× SSC, membranes were exposed at −80°C to Kodak BioMax film with a Kodak BioMax intensifying screen. For quantitative Northern blot assessments, the identical blot was hybridized with a probe for 36B4 cDNA, a commonly employed internal control (36). The ratio of the indicated transcript signal to that of 36B4 transcript for each sample was determined using a Typhoon 8600 PhosphorImager and ImageQuant software (GE Healthcare). Statistical analyses were conducted using single-factor ANOVA.

SSH cDNA library construction. To generate an ob/ob WAT depot subtractive library, the SSH method was used with WAT RNA prepared from 8-wk-old male ob/ob mice. SSH between intra-abdominal EP and SC WAT RNA was performed using the PCR-Select cDNA subtraction kit (BD Biosciences Clontech), according to the manufacturer’s protocol. Tester cDNA was synthesized from total RNA of EP adipose tissue of ob/ob mice and driver cDNA from total RNA of SC adipose tissue of ob/ob mice. RsaI-digested cDNA was purified with a NucleoTrap PCR kit (BD Biosciences Clontech). The tester cDNA was ligated with a cDNA adaptor provided by the manufacturer and hybridized with excess driver cDNA. After hybridization, differentially expressed transcripts were amplified by suppression PCR. Products from the nested PCR were gel-purified on 2% agarose gels and cDNA fragments were subcloned into pGEM-T vector (Promega, Madison, WI).

Differential screening of a WAT adipose depot SSH cDNA library. For array analysis, arrays contained 409 inserts of an SSH ob/ob WAT cDNA library. Filter arrays were prepared by PCR amplification of cDNA inserts directly from the arrayed bacterial stocks of the cDNA library using a nested primer set provided with the PCR-Select cDNA Subtraction kit. After denaturing the PCR products by incubation in 0.6 N NaOH, DNA was spotted onto Hybond-N+ nylon membranes (GE Healthcare) and membranes were neutralized by a 4-min incubation with 0.5 M Tris·HCl, pH 7.5, followed by fixation to the membrane by UV cross-linking. After prehybridization at 65°C for 1 h in 5 ml ExpressHyb solution containing 50 μl of 20× SSC and 50 μg of salmon sperm DNA, duplicate arrays were hybridized overnight at 65°C. Hybridization probes were reverse-transcribed 32P-labeled cDNA populations synthesized from 8 μg of total RNA from ob/ob EP WAT and from ob/ob SC WAT depot WAT depots. Posthybridization, filters were subjected to four incubations in low-stringency wash solution (2× SSC/0.5% SDS) at 65°C for 20 min each and two 20-min incubations in high-stringency wash solution (0.2× SSC/0.5% SDS) at 65°C and membranes were exposed at −80°C to Kodak BioMax film with a Kodak BioMax intensifying screen. cDNA clones of interest were subject to DNA sequencing and data were analyzed using NCBI GenBank databases and the BLAST algorithm.

Cell culture treatments and 3T3-L1 adipocyte differentiation. 3T3-L1 cells (American Type Culture Collection, Manassas, VA) were propagated in DMEM supplemented with 10% calf serum. For differentiation, 3T3-L1 cells were treated at 2 days postconfluence with DMEM supplemented with 10% FCS in the presence of the adipogenic inducers 0.5 mM methylisobutyramide and 1 μM dexamethasone for 48 h, as previously described (48). For treatment of 3T3-L1 adipocytes with TNF-α, cells were incubated with 10 ng/ml TNF-α for 16 h. For studies of regulation by insulin, 3T3-L1 adipocytes were first cultured for 16 h in serum-free DMEM with 0.5% BSA. Cultures were then replenished with serum-free DMEM containing 0.5% BSA supplemented with 100 nM or 2 μM insulin for an additional 16 h. Murine macrophage RAW264.7 cells were cultured in DMEM supplemented with 10% FCS and THP-1 cells in RPMI media supplemented with 10% FCS, 10 mM HEPES, and 1 mM sodium pyruvate. For studies of the regulation of Slc37a2 transcript in RAW264.7 cells, near-confluent cell monolayers were treated for 24 h with 1 μM dexamethasone, 1 mM 8-bromo-dibutyryl cAMP, 10 ng/ml TNF-α, 10 mM sodium butyrate, 100 ng/ml LPS, 100 μM 9-cis retinoic acid, 200 μM indomethacin, or 10 nM triiodothyronine. Lentiviral treatment was at 500 ng/ml (Alexis Biochemicals, San Diego, CA) for 48 h. Unless otherwise stated, chemicals were from Sigma (St. Louis, MO). For leptin regulation of Slc37a2 transcript in RAW264.7 cells, methodology was as described below for human macrophage gene expression, using the following primers: Slc37a2 5′-TCACTTTAGTGCAGAAAGGAGG-3′ and 5′-CAGCAGATGTCATGCAG-3′, with correction against β-actin using primers 5′-TGGAATCTTCGCTTCTGAC-3′ and 5′-TAAAGCGCACTAAAAGG-3′. Slc37a2 transcript expression in human macrophage cell differentiation. For macrophage differentiation of THP-1 monocyes, cells were plated at 7 × 106 per 100-mm culture dish and treated with 100 nM phorbol 12-myristate 13-acetate for 3 days. Total RNA was isolated using an RNeasy kit (Qiagen) with DNase I treatment (Qiagen) and reverse transcription was performed with SuperScript II (Invitrogen) and an oligo(dT)-22 primer. Transcript levels of human Slc37a2, CD14, and GAPDH were assessed by SYBR green-based real-time PCR conducted with an ABI 7500 Real-Time PCR System (Applied Biosystems, Foster City, CA). Reaction conditions were 1× SYBR Green PCR Master Mix (Applied Biosystems), 100 nM each forward and reverse primers, and 50 ng of cDNA. PCR was carried out over 40 cycles of 95°C for 15 s, 60°C for 30 s, and 72°C for 34 s with an initial cycle of 50°C for 2 min and 95°C for 10 min. The following primers were used: Slc37a2 5′-CATCTGCTGTTCACTGCTAC-3′ and 5′-TTGCCCCTGACGCT-3′, CD14 5′-AACTTCTCCGAACCTCAGCC-3′ and 5′-TACCCCATGAGTTTG-3′, and GAPDH 5′-AACAGCTGCAATCGC-3′ and 5′-GAGTATGTTTCTGGAGGCC-3′. Expression of Slc37a2 was monitored against respective GAPDH transcript levels, and fold differences were calculated with the expression of Slc37a2 or CD14 present in untreated cells set to a value of 1. Three wholly independent experimental treatments were performed and statistical analyses were conducted using single-factor ANOVA.

Expression and localization of EGF-P-Slc37a2 fusion protein. An EGFP-Slc37a2 expression construct was generated by PCR amplification of the complete coding sequence minus the initiator methionine using a 5′ primer containing an Xhol site (underlined, 5′-TCACTTCTAGAGCGTTCTCTGCTTCTGCTGCTGCTTCTGCTGCTCTGCTGGT-3′) and 3′ primer containing an Sall site (underlined, 5′-GGCAATGTCACTCAAATTTTTGTACCCACTCCTGC-3′). PCR amplicons were cloned into pCR2.1-TOPO vector and the insert was transferred into pEGFP-C3 vector (BD Biosciences Clontech). The PCR-amplified Slc37a2 portion of this expression construct and the cloning junctions were fully sequenced. For EGFP detection in live cells, COS cells were transfected with either the EGFP-Slc37a2 expression construct or empty EGFP vector using Lipofectamine 2000 (Invitrogen) and assessed at 48 h posttransfection. For studies with Texas Red dextran, COS cells were transfected as above and at 24 h posttransfection cells were washed twice with phenol-red free DMEM/10% FCS and incubated for 16 h in phenol-red free DMEM/10% FCS supplemented with 0.5 ng/ml 10,000, M Texas Red dextran (Invitrogen). Following incubation, cells were washed twice with phenol-red free DMEM/10% FCS and incubated an additional 24 h in serum-free DMEM/10% FCS. For studies with organelle-specific tracking probes (Invitrogen), MitoTracker Red CMX ROS, LysoTracker Red DND-99, ER-Tracker Blue-White DPX, and BODIPY Texas Red C5-ceramide complexed to BSA for Golgi detection were used for staining live
cells based on manufacturer’s guidelines. Cells were observed using an Olympus IX70 microscope and digital images were obtained and merged using Spot Advanced software (Diagnostic Instruments, Sterling Heights, MI).

Slc37a2 expression constructs and Western blot analysis. An expression construct for Slc37a2 that contained a COOH-terminal HA tag was generated by PCR amplification of the complete coding sequence for Slc37a2 using a mouse I.M.A.G.E. clone (GenBank accession number BC063326) as template. For this, a 5’ PCR primer (5’-TCA-TCTCGAGATGGCGGTCCCTCGGCTCTGG-3’) was used in combination with a 3’ primer that incorporated a COOH-terminal HA tag followed by a stop codon (5’-GGCACTGACATCTCAAGAGCGTAAAATGGAACATCGTATGGGTAAATTTGTTTGTACCCA-CGTGCTCTC-3’) with an XhoI site (underlined) and a SalI site (underlined), respectively. PCR product was cloned into the pCR2.1-TOPO vector (Invitrogen) and insert was transferred into pcDNA3.1 vector (Invitrogen). The PCR-amplified Slc37a2 portion of this expression construct and the cloning junctions were fully sequenced. For Western blot analysis, cell lysate was prepared by harvest in lysis buffer (50 mM Tris·HCl, pH 8.0, 150 mM NaCl, 1% NP-40, and 200 μM PMSF) and following removal of insoluble matter protein concentration was determined. Samples were fractionated on 8% SDS-PAGE and electrobotted onto PVDF membrane with 0.025 M Tris/0.192 M glycine transfer buffer containing 10% methanol. Following transfer, membranes were blocked in 5% nonfat milk in PBS/0.5% Tween 20 (PBS-T) for 1 h and incubated with monoclonal anti-HA antibody (cat. no. MMS-101R, Covance, Berkeley, CA) at a 1:4,000 dilution for 1 h and horseradish peroxidase-conjugated goat anti-mouse (cat. no. SC-2005, Santa Cruz Biotechnology, Santa Cruz, CA) at a 1:2,000 dilution for 30 min. All washing of Western blots was conducted in PBS-T. After the final wash, signals were detected by incubation in ECL plus reagent (GE Healthcare) and exposure to Fuji RX film.

Analysis of Slc37a2 protein glycosylation. COS or HeLa cells were transiently transfected with HA-tagged Slc37a2 expression construct or empty vector using Lipofectamine 2000. For PNGase F digestion, cell lysates of transfected HeLa cells were boiled in denaturing buffer (0.5% SDS, 0.04 M DTT) for 10 min and the sample was adjusted to 1% Nonidet P-40, 50 mM sodium phosphate, pH 7.5, and 45 U/ml PNGase F (New England Biolabs, Beverly, MA) and supplemented with a protease inhibitor cocktail (Sigma). Sample was incubated for 1 h at 37°C followed by 8% SDS-PAGE and Western blot analysis was carried out with an anti-HA antibody as described above. Neuraminidase digestion was performed using V. cholerae neuraminidase (Sigma) as described previously (48). In vitro transcription and translation of HA-tagged Slc37a2 were performed with a TNT T7 Quick Coupled Transcription/Translation System (Promega). After a 1.5-h incubation at 30°C, 1 μl of the reactions was analyzed by Western blot. For tunicamycin treatment, at 6 h posttransfection cells were incubated in the presence of 1 mg/ml tunicamycin (Alexis Biochemicals) or DMSO vehicle, and protein was harvested 16 h.

Site-directed mutagenesis of consensus N-linked glycosylation sites was carried out employing the HA-tagged Slc37a2 expression construct as template and using a GeneEditor in vitro Site-Directed Mutagenesis System (Promega). The asparagine of the respective N-linked consensus site was mutated to alanine using the following primers: for the N53 site, 5’-CCGGCTGACAGCGCTGGCTCA-GAGATGGG-3’; for the N62 site, 5’-TGTCACGCTGGTCGTCG-ACACCCACGATC-3’; and for the N68 site, 5’-ACACCCACGATCTGGCCTGATTACCC-3’. Mutations were confirmed by DNA sequencing.

RESULTS

Subtractive screening identifies Slc37a2 as a WAT depot-enriched transcript. To identify transcripts that show increased expression in the EP WAT depot, we utilized the SSH method and prepared a subtracted cDNA library by subtracting transcript-
with bacterial sugar transporters, particularly *Escherichia coli* GlpT (31, 37), a glycerol 3-phosphate permease. Those amino acids that are identical for murine Slc37a2 and *E. coli* GlpT are indicated by bold italic typeface in Fig. 2A.

Database analysis reveals the Slc37a2 gene is present in both vertebrate and invertebrate genomes with homologs found in human, dog, chick, flies, zebrafish, and other species. Analysis of the Slc37a2 protein sequence reveals the presence of three consensus sites for N-linked glycosylation (N-\(\text{X}-\text{S/T, } \text{X} \neq \text{P}\) present between predicted transmembrane regions 1 and 2. As discussed by Bartoloni and Antonarakis (5), the four Slc37a proteins share a moderate degree of protein sequence homology. Our database analysis indicates that over their respective full protein sequences, Slc37a2 and Slc37a1 evidence \(\sim 60\%\) identity and Slc37a2 and Slc37a3 evidence \(\sim 40\%\) identity. Slc37a2 and Slc37a4 have \(\sim 20\%\) identity; however, this is found only in regard to the NH2-terminal halves of the two proteins.

Depot enrichment of Slc37a2 transcript is attributable to differential macrophage infiltration of intra-abdominal WAT. Since Slc37a2 transcript was present in WAT, we next examined whether expression of Slc37a2 could be detected in a well-established model of in vitro adipocyte differentiation, murine 3T3-L1 cells. Hybridization with the adipocyte marker genes stearoyl co-A desaturase 1 (SCD1) and adipocyte fatty acid binding protein (aFABP), shown in Fig. 3, indicates effective in vitro adipocyte conversion of 3T3-L1 preadipocytes. Figure 3A reveals that the Slc37a2 transcript is not detected in either 3T3-L1 preadipocytes or adipocytes, with EP WAT of ob/ob mice included for comparison (Fig. 3A, last lane). In addition, neither treatment with TNF-\(\alpha\) nor insulin, two agents key in modulating adipocyte gene expression and physiology, resulted in detectable levels of Slc37a2 transcript in 3T3-L1 adipocytes.

We next addressed whether Slc37a2 transcript level in ob/ob WAT would specifically track with the presence of macrophages by using expression of the robust macrophage-specific marker emr1 (33), also known as F4/80. As shown in Fig. 3B, emr1 transcript level tracks closely with that for Slc37a2 in ob/ob WAT with a similar pattern of Slc37a2 and emr1 signal intensity seen across the SC, EP, and retroperitoneal (RP) WAT depots, and nearly lack of detection of either transcript in brown adipose tissue (BAT). The high expression in RP WAT, a distinct type of intra-abdominal WAT depot, supports our finding of differential expression of Slc37a2 in intra-abdominal (i.e., EP and RP) WAT vs. SC WAT. Also shown in this figure is the level of Slc37a2 in RAW264.7 macrophages. In contrast, the well-characterized adipocyte marker transcripts SCD1 and aFABP are expressed at a similar level across the three WAT depots and are also readily detected in BAT. Together, these data lead to the conclusion that macrophages present in ob/ob WAT are likely the major cell type responsible for the WAT expression of Slc37a2 transcript.

We next conducted studies to more precisely assess whether the difference in magnitude of expression of the Slc37a2 transcript we find between SC and EP ob/ob WAT depots could be explained solely by the differential presence of tissue macrophages in these two WAT depots. For this, we conducted quantitative Northern blot analysis for Slc37a2 and emr1 transcripts for SC and EP WAT depots for four individual ob/ob mice. A statistically significant increase of approximately two-fold is noted for Slc37a2 (Fig. 3C) and emr1 (Fig. 3D) transcripts. Graphical representation of the ratio of Slc37a2 to emr1 transcript level is shown in Fig. 3E. Here, we find that the Slc37a2 to emr1 transcript ratio is similar for the SC and the EP...
WAT depot. We interpret this to indicate that an enrichment of adipose tissue macrophages in the EP depot likely accounts for the upregulation of Slc37a2 transcript we observe between EP vs. SC ob/ob WAT depots.

Slc37a2 shows marked enrichment in ob/ob WAT. Given the degree of enrichment of macrophages reported for obese WAT (9, 15, 28, 39, 44, 45, 58), if adipose tissue macrophages were indeed responsible for WAT Slc37a2 transcript expression, it would be predicted to evidence enriched expression in obese vs. wild-type WAT. We therefore quantitatively compared Slc37a2 and emr1 transcript levels, and their relative ratios, in wild-type SC vs. ob/ob SC WAT and in wild-type EP vs. ob/ob EP WAT, shown in Fig. 4, left and right columns, respectively. The Northern blot of the data for SC WAT is shown in Fig. 4A and indicates marked enrichment of Slc37a2 and emr1 transcripts in ob/ob SC WAT. Figure 4B illustrates that a statistically significant increase of sevenfold is noted for the level of Slc37a2 transcript in ob/ob SC WAT compared with wild-type, while the emr1 transcript level is enriched by about twofold (Fig. 4C). In contrast to the approximately ninefold difference noted for the Slc37a2 transcript, wild-type SC and ob/ob SC WAT express similar levels of two adipocyte marker transcripts, aFABP and SCD1. Given that emr1 is a highly specific macrophage marker, the twofold increase in emr1 transcript level in ob/ob vs. wild-type SC WAT likely reflects macrophage infiltration in obese tissues, consistent with recent reports (9, 39, 56, 58). Figure 4D illustrates that the Slc37a2 to emr1 transcript ratio is ~4.5; this suggests that Slc37a2 transcript level may be upregulated in that population of macrophages that infiltrate obese adipose tissue. As shown by the Northern blot (Fig. 4E), data for Slc37a2 transcript expression in wild-type EP vs. ob/ob EP WAT are similar to that found for SC WAT; namely, an approximately ninefold enrichment of Slc37a2 transcript level (Fig. 4F), an approximately twofold enrichment for emr1 transcript (Fig. 4G), and a Slc37a2 to emr1 transcript level ratio of ~4.5 for wild-type vs. ob/ob EP depots (Fig. 4H). The differential emr1 transcript expression we show here in obese WAT also serves as independent evidence of macrophage infiltration into WAT in obesity and highlights the utility of the murine ob/ob obesity model for studies on the mechanisms of this infiltration.

Slc37a2 transcript expression in murine tissues and macrophages. To further investigate Slc37a2 transcript expression pattern(s), we conducted Northern blot analysis on a panel of murine tissues. For wild-type mice (Fig. 5A) Slc37a2 transcript is restricted to two tissue types rich in macrophages, spleen and thymus; its expression had previously been reported to be readily detected in bone marrow-derived murine macrophages (49). Among ob/ob tissues, Fig. 5B, we find that it is the EP WAT sample that evidences highest transcript expression. We also note that the apparent Slc37a2 to emr1 transcript level ratio is distinct in spleen vs. WAT. A higher relative expression level of Slc37a2 to emr1 transcript level is noted in WAT, possibly indicating that the macrophages present in ob/ob WAT are enriched for Slc37a2 transcript, compared with splenic macrophages.

To begin to address the nature of expression and regulation of the Slc37a2 transcript in macrophages, we treated murine RAW264.7 macrophages with a number of agents and assessed Slc37a2 transcript level by Northern blot (Fig. 6A). Here, we...
find that, as previously described, exposure to 8-bromo dibutyryl cAMP upregulates Slc37a2 transcript (49). Of the other agents tested, only sodium butyrate, a short-chain fatty acid that possesses histone deacetyltransferase-inhibiting activity, affected Slc37a2 transcript level, with an 85% decrease observed. None of the other agents tested, including those integral to macrophage function, such as TNF-α and LPS, or leptin (data not shown) led to an alteration of the level of endogenous Slc37a2 transcript.

We next examined expression of SLC37A2 transcript in human macrophages using THP-1 cells (Fig. 6B). Upon treatment with phorbol 12-myristate 13-acetate, THP-1 cells undergo macrophage differentiation as evidenced by adherence and spreading on culture dishes and by upregulation of genes indicative of macrophage differentiation. As expected, the level of expression of the macrophage marker transcript CD14 is dramatically induced as a result of the differentiation protocol (Fig. 6B, left). Strikingly, we observed a 46-fold increase in expression level of SLC37A2 transcript upon macrophage differentiation of THP-1 cells (Fig. 6B, right). We have also observed a similar magnitude of increase for SLC37A2 transcript upon macrophage conversion of HL-60 cells (data not shown). These data reveal that SLC37A2 transcript is expressed in human macrophage cells and, moreover, its upregulation appears to be closely tied to emergence of the macrophage phenotype.

Ectopic expression of Slc37a2 results in the appearance of large intracellular vacuoles. To investigate the subcellular localization of Slc37a2, we utilized an EGFP-Slc37a2 fusion protein construct and carried out studies using transfected COS cells. The results of these studies (Fig. 7A) indicate that expression of Slc37a2 results in the accumulation of large intracellular vacuoles that are clearly rimmed with signal for the EGFP-Slc37a2 fusion protein. Oil Red O staining for lipid indicated that the vacuoles do not contain lipid (data not shown). To determine whether the vacuoles might arise from endocytosis of the plasma membrane, we incubated EGFP-Slc37a2 or empty vector-transfected COS cells in media supplemented with 10,000 μM Texas Red dextran. Shown in Fig. 7B, a subpopulation of these vacuoles clearly contains well-defined circular regions of Texas Red signal that colocalize with the vacuoles. In contrast, a more diffuse appearance of Texas Red signal is found in cells lacking EGFP-Slc37a2 signal, typified by the cell indicated to the left of the field, designated by the arrow. In an attempt to define the subcellular origin of the vacuoles, we utilized a number of molecular probes for intracellular organelles (Invitrogen). Neither trackers for mitochondria, endoplasmic reticulum, Golgi apparatus, nor lysosomes yielded signals that colocalized with that for EGFP-Slc37a2 (data not shown).

Analysis of Slc37a2 protein reveals heterogeneity of mass and N-linked sugars. To begin studies on the fundamental nature of the Slc37a2 protein, we first used in vitro transcrip-
tion and in vitro translation of the open reading frame of Slc37a2 fused to a COOH-terminal HA tag to investigate the size of the primary translation product. Western blot analysis using HA antibody, shown in Fig. 8A, reveals that the primary translation product of Slc37a2 migrates at ∼50 kDa, in good agreement with the size predicted from its open reading frame. To examine the nature of the Slc37a2 protein expressed in mammalian cells, we utilized transient transfection of HA-tagged Slc37a2 expression construct or an empty vector negative control plasmid. Figure 8, B and C, for HeLa and COS cells, respectively, shows that the Slc37a2 protein appears as a poorly resolved heterogeneous species with the most intense signal(s) found from 50 to 75 kDa.

We next asked whether the discrepancy between the in vitro translation product of ∼50 kDa and the heterogeneous signal present in transfected cells was due to posttranslational addi-

tion of N-linked and/or O-linked sugars. As was presented in Fig. 2A, three N-linked glycosylation sites are noted in Slc37a2, located between the first and second predicted transmembrane domains. Cell lysates were prepared from HeLa cells transfected with HA-tagged Slc37a2 expression construct or empty vector. Lysates were incubated with the enzyme PNGase F to digest N-glycans or incubated under mock conditions and processed for Western blot with the HA antibody. Figure 8D reveals that PNGase F treatment led to a marked decrease in Slc37a2 protein mass and the appearance of a more distinct signal of ∼50 kDa. These data indicate that Slc37a2 is modified via the addition of N-linked sugar groups. This conclusion is also supported by the Western blot data in Fig. 8E. For this, the HA-tagged Slc37a2 expression construct was transfected into COS cells and cells subjected to culture in the absence or presence of tunicamycin, an inhibitor of N-
linked glycosylation. Here, tunicamycin treatment results in a decrease in the mass and heterogeneity of the Slc37a2 protein, to a size consistent with that of the in vitro translation product. We do not presently know the origin or identity of the smaller species of the Slc37a2-HA fusion protein present in the PNGase F and tunicamycin-treated samples. Western blot analysis for cell lysates prepared from HeLa cells transfected with the HA-tagged Slc37a2 expression construct and treated with V. cholera neuraminidase showed no alteration in the appearance of Slc37a2 protein, indicating it does not evidence posttranslational modification by O-linked sugars (data not shown). To assess the contribution of each of the three putative N-linked glycosylation sites to the heterogeneity of the Slc37a2 protein, we conducted site-directed mutagenesis to alter each to alanine. These mutations did not appreciably affect the size or degree of heterogeneity observed for the Slc37a2 protein (data not shown). This suggests that it is not a single one of the three putative N-linked glycosylation sites that contributes to Slc37a2 glycosylation but is rather a combinatorial effect.

DISCUSSION

Our data reveal that Slc37a2 is a new macrophage-specific transcript that we predict to play a transport role in macrophage metabolism. The structural motifs of Slc37a2 clearly place it in the MFS as a putative sugar transporter; however, the substance(s) transported by this Slc37a2 and its role in macrophage function remain to be determined. Of the four Slc37a proteins, only Slc37a4, also known as the microsomal glucose-6-phosphate translocase 1 (G6PT1), has been studied in detail and has been empirically demonstrated to possess transporter function (18). Defects in Slc37a4/G6PT1 are responsible for glycogen storage disease type Ib (GSD-Ib) (26, 43). GSD-Ib patients show disrupted glucose homeostasis and immune system complications of intermittent neutropenia and defects in neutrophil respiratory burst and chemotaxis (18, 40). Given the demonstrated function of Slc37a4 in the immune system, it is noteworthy that we have now found Slc37a2 to be specifically expressed in a cell type of the immune system, i.e., the macrophage. It is possible that similar to Slc37a4, Slc37a2 is key to aspects of immune system function(s). Data on the Slc37a1 and Slc37a3 genes/proteins are surprisingly scant and limited to transcript expression. Slc37a1 transcript has been reported in adult bone marrow, colon, small intestine, kidney, liver, and other tissues, with particularly enriched expression noted in tissues evidencing a high rate of gluconeogenesis (5, 6). Given its homology to the E. coli glycerol 3-phosphate permease GlpT (37), Slc37a1 is presumed to be a glycerol 3-phosphate transporter that would function by exchanging glycerol 3-phosphate and inorganic phosphate (5, 6). Expression data on Slc37a3 are limited to in silico assessment of EST cDNA clone frequencies where it appears to be particularly enriched in cDNA libraries derived from breast and stomach (5).
The nature of the vacuoles observed on ectopic expression of the Slc37a2 protein is currently unclear. However, the observation that a subset of these vacuoles were positive for Texas Red dextran signal suggests that either the vacuoles are directly involved in uptake from the extracellular environment or, on the other hand, that they are intracellular in nature but undergo fusion with endocytic vacuoles to result in the appearance of Texas Red dextran in their interior. Vacuoles of a similar appearance have been noted on ectopic expression of the chloride-iodide transporter protein pendrin in cultured cells. This phenotype was determined to be due to perturbation of the endoplasmic reticulum attributed to the slow-folding nature of the pendrin protein (46). Mutations in pendrin that lead to its retention in the endoplasmic reticulum are associated with Pendred syndrome, an autosomal recessive disorder characterized by congenital deafness and goiter (46). To date, no genetic disorders have been described that map the location of the human SLC37A2 gene, 11q24.2.

The nature of the vacuoles observed on ectopic expression of the Slc37a2 protein is currently unclear. However, the observation that a subset of these vacuoles were positive for Texas Red dextran signal suggests that either the vacuoles are directly involved in uptake from the extracellular environment or, on the other hand, that they are intracellular in nature but undergo fusion with endocytic vacuoles to result in the appearance of Texas Red dextran in their interior. Vacuoles of a similar appearance have been noted on ectopic expression of the chloride-iodide transporter protein pendrin in cultured cells. This phenotype was determined to be due to perturbation of the endoplasmic reticulum attributed to the slow-folding nature of the pendrin protein (46). Mutations in pendrin that lead to its retention in the endoplasmic reticulum are associated with Pendred syndrome, an autosomal recessive disorder characterized by congenital deafness and goiter (46). To date, no genetic disorders have been described that map the location of the human SLC37A2 gene, 11q24.2.
Our identification of Slc37a2 transcript was based on its differential expression between WAT depots and we demonstrated that an enrichment of adipose tissue macrophages in the EP depot likely accounts for the approximately twofold up-regulation of Slc37a2 transcript we observe in EP vs. SC ob/ob WAT depots. This is in line with the reports that intra-abdominal adipose tissue expresses increased levels of the chemokine MCP-1 (11), a key signal in macrophage infiltration, and that transgene-driven expression of MCP-1 in adipose tissue results in increased macrophage infiltration (32). With the assumption that emr1 expression tracks closely with macrophage number irrespective of WAT depot type, the upregulation of Slc37a2 transcript we describe between ob/ob and wild-type WAT would be only partly explained by the increased numbers of macrophages that are present in ob/ob vs. wild-type WAT and/or are capable of infiltrating the tissue. Our data support the notion that the Slc37a2 transcript appears to be differentially upregulated specifically in the subpopulation of macrophages that infiltrate WAT in obesity. As such, we found that Slc37a2-positive macrophages present in wild-type WAT may be molecularly distinct from those found in wild-type WAT. Our data indicate that emr1-positive macrophages in ob/ob WAT express elevated levels of Slc37a2 transcript compared with emr1-positive macrophages present in wild-type WAT. This indicates that a unique subpopulation of macrophages, rather than those typically resident in wild-type WAT, appears to infiltrate WAT under conditions of obesity. This idea is in line with a report that macrophage infiltration into WAT is attributed to migration from bone marrow (56).

It has been proposed that increased local macrophage number in obese WAT likely contributes to the spectrum of inflammatory mediators present in obesity, many of these linked to the systemic detrimental effects of obesity on health (39). We postulate that Slc37a2 possesses a sugar transporter function that is particularly required for those macrophages that are present in obese WAT. Modulation of Slc37a2 expression and/or function in macrophages may serve as an intervention point to limit the contribution of macrophages present in obese adipose tissue to the chronic inflammatory state present in obesity. Future studies from this laboratory will address the function of the Slc37a2 protein in macrophage metabolism and investigate its relationship to inflammation and obesity.

GRANTS

Research was supported by National Institutes of Health National Institute of Diabetes and Digestive and Kidney Diseases Grant 5R21-DK-064992 to C. M. Smas.

REFERENCES

E120
Slc37a2 EXPRESSION IN OBESE ADIPOSE TISSUE

