Handout 3: Crystallographic Plane & Space Groups

Chem 6850/8850
X-ray Crystallography
The University of Toledo

cora.lind@utoledo.edu
Crystallographic symmetry

Key point to remember:

- Crystallographic symmetry involves long range order and must produce space filling
 - Only 2, 3, 4, 6-fold rotations
- Internal symmetry must be compatible with unit cell symmetry, e.g., edges must be mapped onto each other through symmetry operations
- We need to consider translational (unit cell, centering, glides, screws) and point (rotations, mirrors, inversions, roto-inversions) symmetry
- Any combinations of symmetry elements must still fulfill these conditions
 - 32 crystallographic point groups that give rise to periodicity in 3D (10 in 2D)
 - 230 crystallographic space groups in 3D (17 plane groups in 2D)
Interpretation of space group symbols

- All space group symbols start with a capital letter corresponding to the lattice centering, followed by a collection of symbols for symmetry operations in the three lattice directions (plane groups use lower case letter for centering, p or c)

- There are sometimes short notations for space group symbols
 - P 1 2 1 is usually written as P 2
 - primitive monoclinic cell that has a two-fold rotation along the b axis
 - P 21 21 21 (cannot be abbreviated)
 - primitive orthorhombic cell that has a 21 screw along each axis
 - C m m a (full symbol: C 2/m 2/m 2/a)
 - C-centered orthorhombic cell with a mirror plane perpendicular to a and b and an a glide plane perpendicular to c
 - also has implied symmetry elements (e.g., the 2-fold rotations)
The 17 plane groups (1)

The 17 plane groups (2)

Cmmm 2 C\textsubscript{11}

\textbf{No. 35}

Cmm 2

\begin{itemize}
 \item \textbf{Headline:} Section 2.3.
 \begin{itemize}
 \item Short Hermann–Mauguin symbol (Sections 2.4 and 12.2)
 \item Schoenflies symbol (Sections 12.1 and 12.2)
 \item Crystal class (Point group) (Sections 10.1 and 12.1)
 \item Crystal system (Section 2.1)
 \end{itemize}

 \item Number of space group [Same as in \textit{IT}(1952)]

 \item \textbf{Space-group diagrams}, consisting of one or several projections of the symmetry elements and one illustration of a set of equivalent points in general position. The numbers and types of the diagrams depend on the crystal system. The diagrams and their axes are described in Section 2.6; the graphical symbols of symmetry elements are listed in Section 1.4.

 \begin{itemize}
 \item For monoclinic space groups see Section 2.16; for orthorhombic settings see Section 2.6(iv).
 \end{itemize}
\end{itemize}
Hermann-Mauguin symbols consist of:
- letter indicating centering of the cell (P, R, I, F, C)
- set of characters indicating symmetry elements

- Use lower case letters for plane group centering, capital letters for space group centering
- The one, two or three entries after the centering letter refer to one, two or three kinds of symmetry directions of the lattice as outlined in Table 2.4.1
 - Can be singular directions (monoclinic and orthorhombic) or sets of equivalent directions
- Symmetry planes are represented by their normals
 - If a symmetry axis and a symmetry plane are parallel, the two characters are separated by a slash, e.g. P2/m ("P 2 over m")
- The symbol 1 is used for lattice directions that carry no symmetry elements
 - may be omitted if no misinterpretation is possible, e.g. P6 instead of P611 etc.
 - May be written to distinguish standard settings (e.g., monoclinic, unique axis b) from non-standard settings (unique axis a or c)

For high symmetry space groups, symmetry axes are often suppressed in the short symbol (e.g., Pnma vs. P 21/n 21/m 21/a)

Table 2.4.1. Lattice symmetry directions for two and three dimensions

Directions which belong to the same set of equivalent symmetry directions are collected between braces. The first entry in each set is taken as the representative of that set.

<table>
<thead>
<tr>
<th>Lattice</th>
<th>Symmetry direction (position in Hermann–Mauguin symbol)</th>
<th>Primary</th>
<th>Secondary</th>
<th>Tertiary</th>
</tr>
</thead>
<tbody>
<tr>
<td>Two dimensions</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Oblique</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rectangular</td>
<td>Rotation point in plane</td>
<td>[10]</td>
<td>[01]</td>
<td></td>
</tr>
<tr>
<td>Square</td>
<td></td>
<td>{01}</td>
<td></td>
<td>{11}</td>
</tr>
<tr>
<td>Hexagonal</td>
<td></td>
<td>[10]</td>
<td>[01]</td>
<td>[11]</td>
</tr>
<tr>
<td>Three dimensions</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Triclinic</td>
<td>None</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Monoclinic*</td>
<td>[010] ('unique axis b') [001] ('unique axis c')</td>
<td>[010]</td>
<td>[001]</td>
<td>[001]</td>
</tr>
<tr>
<td>Orthorhombic</td>
<td>[100]</td>
<td>[010]</td>
<td>[001]</td>
<td></td>
</tr>
<tr>
<td>Tetragonal</td>
<td>[001]</td>
<td>[100]</td>
<td>[010]</td>
<td>[110]</td>
</tr>
<tr>
<td>Hexagonal</td>
<td>[001]</td>
<td>[100]</td>
<td>[010]</td>
<td>[110]</td>
</tr>
<tr>
<td>Rhombohedral (hexagonal axes)</td>
<td>[001]</td>
<td>{100}</td>
<td>{010}</td>
<td>{110}</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rhombohedral (rhombohedral axes)</td>
<td>[111]</td>
<td>{110}</td>
<td>{101}</td>
<td>{101}</td>
</tr>
<tr>
<td>Cubic</td>
<td>[100]</td>
<td>[111]</td>
<td>[111]</td>
<td>[111]</td>
</tr>
</tbody>
</table>

For the full Hermann–Mauguin symbols see text.
Space group diagrams

- Show the relative locations and orientations of the symmetry elements
 - Depending on how complex the space group symmetry is, one or several drawings can be used
- Illustrate the arrangement of a set of symmetry equivalent points of a general position
 - A "general position" is any point in the unit cell that does not coincide with any symmetry elements
 - Maximum number of atoms generated
- Except for representations with rhombohedral axes, all projection directions are along a cell axis
 - In rhombohedral, triclinic and monoclinic cells, this can result in the other axes not being parallel to the plane of projection and is indicated by a subscript \(p \)
- Symmetry elements that lie above the plane of projection are designated by the height \(h \) above the plane. \(h \) is given as a fraction along the lattice direction of projection
- For rhombohedral space groups, two settings are given, one with rhombohedral and one with hexagonal axes

Fig. 2.6.9. Rhombohedral \(R \) space groups. Obverse triple hexagonal cell with 'hexagonal axes' \(a, b \) and primitive rhombohedral cell with projections of 'rhombohedral axes' \(a_p, b_p, c_p \). Note: In the actual space-group diagrams only the upper edges (full lines), not the lower edges (dashed lines) of the primitive rhombohedral cell are shown (\(G \) = General-position diagram).
Origin of the unit cell: Section 2.7. The site symmetry of the origin and its location with respect to the symmetry elements are given.

Asymmetric unit: Section 2.8. One choice of asymmetric unit is given.

Symmetry operations: Sections 2.9 and 11. For each point \(\bar{x}, \bar{y}, \bar{z} \) of the general position that symmetry operation is listed which transforms the initial point \(x, y, z \) into the point under consideration. The symbol describes the nature of the operation, its glide or screw component (given between parentheses), if present, and the location of the corresponding symmetry element.

The symmetry operations are numbered in the same way as the corresponding coordinate triplets of the general position. For centred space groups the same numbering system is applied in each block, e.g. under 'For \((\frac{1}{2}, \frac{1}{2}, 0) + set'.
Choice of origin

- In all centrosymmetric space groups, the origin is chosen on an inversion center
 - A second origin choice can be given if there are other high symmetry sites
- In all non-centrosymmetric space groups, the origin is at the point of highest symmetry
 - Usually the highest rotation axis
 - Screw axes are used if no simple rotation axes are present
 - If no rotation or screw axes are present, the intersection of mirror and glide planes is chosen as origin
 - Exceptions: In P2₁2₁2₁ and related supergroups, the origin is chosen so that it is surrounded symmetrically by three pairs of 2₁ axes

Asymmetric unit

- The smallest part of space from which the whole of space can be filled exactly by application of all symmetry operations
 - Mirror planes and rotation axes must form boundary planes and edges
 - Centers of inversion must be on vertices or at the midpoints of boundary planes or edges
- For higher symmetry unit cells, the shape of the asymmetric unit can be rather complicated
Generators selected: Sections 2.10 and 8.3.5. A set of generators, as selected for these Tables, is listed in the form of translations and numbers of general-position coordinates. The generators determine the sequence of the coordinate triplets in the general position and of the corresponding symmetry operations.

Positions: Sections 2.11 and 8.3.2. The general Wyckoff position is given at the top, followed downwards by the various special Wyckoff positions with decreasing multiplicity and increasing site symmetry. For each general and special position its multiplicity, Wyckoff letter, oriented site-symmetry symbol, as well as the appropriate coordinate triplets and the reflection conditions, are listed. The coordinate triplets of the general position are numbered sequentially; cf. Symmetry operations.

Oriented site-symmetry symbol (third column): Section 2.12. The site symmetry at the points of a special position is given in oriented form.

Reflection conditions (right-most column): Section 2.13.

[Lattice complexes are described in Section 14: Tables 14.1 and 14.2 show the assignment of Wyckoff positions to Wyckoff sets and to lattice complexes.]

Symmetry of special projections: Section 2.14. For each space group, orthographic projections along three (symmetry) directions are listed. Given are the projection direction, the plane group of the projection, as well as the axes and the origin of the projected cell.
5 Maximal non-isomorphic subgroups

I
[2] C112(P2) (1; 2)
[2] C1m1(Cm) (1; 3)
[2] Cm11(Cm) (1; 4)

IIa
[2] Pmm2 1; 2; 3; 4
[2] Pba2 1; 2; (3; 4)+(1,1,0)
[2] Pbm2(Pma2) 1; 3; (2; 4)+(1,1,0)
[2] Pma2 1; 4; (2; 3)+(1,1,0)

IIb
[2] Ccc2(e′=2e); [2] Cmc21(e′=2e); [2] Ccm21(e′=2e)(Cmc21); [2] Imm2(e′=2e); [2] Iba2(e′=2e);
[2] Ibm2(e′=2e)(Ima2); [2] Ima2(e′=2e)

5 Maximal isomorphic subgroups of lowest index

IIc
[3] Cmm2(a′=3a or b′=3b); [2] Cmm2(e′=2e)

7 Minimal non-isomorphic supergroups

I

II
[2] Fmm2; [2] Pmm2(2a′=a, 2b′=b)

5 Maximal non-isomorphic subgroups: Sections 2.15 and 8.3.3.
Type I: translationengleiche or t subgroups
Type IIa: klassengleiche or k subgroups, obtained by 'decentring' the conventional cell; applies only to space groups with centred cells;
Type IIb: klassengleiche or k subgroups, obtained by enlarging the conventional cell.
Given are: For types I and IIa: Index [between brackets]; 'unconventional' Hermann–Mauguin symbol of the subgroup; 'conventional' Hermann–Mauguin symbol of the subgroup, if different (between parentheses); coordinate triplets retained in subgroup.
For type IIb: Index [between brackets]; 'unconventional' Hermann–Mauguin symbol of the subgroup; basis vector relations between group and subgroup (between parentheses); 'conventional' Hermann–Mauguin symbol of the subgroup, if different (between parentheses).

6 Maximal isomorphic subgroups of lowest index: Sections 2.15, 8.3.3, and 13.1.
Type IIc: klassengleiche or k subgroups of lowest index which are of the same type as the group, i.e. have the same standard Hermann–Mauguin symbol. Data as for subgroups of type IIb.

7 Minimal non-isomorphic supergroups: Sections 2.15 and 8.3.3.
The list contains the reverse relations of the subgroup tables; only types I (t supergroups) and II (k supergroups) are distinguished. Data as for subgroups of type IIb.
Sub- and supergroups

• Can be used to describe symmetry related space groups
• Subgroups contain a set of symmetry operations that also belongs to the space group being discussed
 - The set of symmetry operations must also form a space group
 - If it is possible to take symmetry elements away “step by step”, an “order” of space groups can be established with decreasing symmetry: $G > M > H$
 - A subgroup H is called a maximal subgroup if there is no subgroup of higher symmetry between H and G (example: $P2_1/c$ has $P2_1$, Pc and $P-1$ as maximal subgroups, while $P1$ is a non-maximal subgroup)
 - All subgroups can be listed as chains of maximal subgroups (e.g., $P2_1/c > P-1 > P1$)
• Symmetry can be reduced by several means
 - Removal of point symmetry elements: translationsgleiche or t subgroups (translation equivalent)
 - “Thinning out” of symmetry operations, e.g. doubling of a cell axis in the same space group, which is equivalent to loss of translational symmetry, or by replacing rotation axes by screw axes: klassengleiche or k subgroups (same class/point group)
• Supergroups are the opposite of subgroups, so if a space group X is listed as a subgroup of another space group Y, then Y must be listed as a supergroup of X