Elementary Chemistry for Health Sciences
The University of Toledo
College of Natural Sciences and Mathematics
Department of Chemistry and Biochemistry
CHEM1110–002

Instructor: Dr. Amy Paik
Email: amy.paik@utoledo.edu
Office Hours: M/W 3:00 – 4:30 PM, T/R 11:30 AM - 12:30 PM or by appointment
Office Phone: 419-530-4592
Office Location: BO2036

Term: Fall 2019
Lecture Location: FH 2100
Lecture Day/Time: TR 2:20 – 3:40 PM
Credit Hours: 3

COURSE/CATALOG DESCRIPTION
The study of chemistry for students that are studying nursing or other allied health related fields who have not had a previous course in chemistry or whose preparation in chemistry is not sufficient to begin Chemistry for Health Sciences (CHEM 1120).

COURSE OVERVIEW
CHEM 1110 is the introductory chemistry course to prepare students for CHEM 1120 – Chemistry for Health Sciences. As a prerequisite to CHEM 1120 – Chemistry for Health Sciences, it is offered for students that did not meet the criteria for direct entrance into CHEM 1120. The grade of C or higher is required in CHEM 1110 to continue on to CHEM 1120. It provides a basic foundation in math and the principles of general chemistry needed to continue on to CHEM 1120. This course is typically taken by nursing students, elementary education students, sports management students, and some science majors who do not want or need the more rigorous chemistry background that is provided by two or three years of chemistry courses. It is not appropriate for chemistry majors and may be too rigorous for non-science majors who are only interested in fulfilling their general education science core requirement. If you have any questions about course placement, please see me as soon as possible.

TEACHING STRATEGIES
Lecture Attendance is required, please arrive on time, Learning Catalytics (LC) questions for points will be included in lecture. You are responsible for all material, experiments, and problems covered in class. You will be provided with partial lecture outlines of the course material via Blackboard.

Participation Points will be given in lecture and will mostly come from utilization of the LC interactive polling software.

Textbook We urge you to read the text before the lecture so you are familiar with concepts before hearing about them during the limited time of each class session

PREREQUISITES AND COREQUISITES
One of the following: ACT math score of 20 or higher, College Algebra Test score of 10 or higher, ALEKS math score of 46 or higher, completion of MATH 1200 with a grade of C or higher, or placement into any higher level math course (1320, 1340, 1750, 1830, 1850).
REQUIRED TEXTS AND ANCILLARY MATERIALS

TECHNOLOGY REQUIREMENTS

Blackboard (https://blackboard.utdl.edu/webapps/login/) and Modified Mastering Chemistry (available through the Blackboard course) will be used on a regular basis in this course. Students need to have access to a properly functioning computer throughout the semester. Student computers need to be capable of running the latest versions of plug-ins, recent software and have the necessary tools to be kept free of viruses and spyware. Updated software is available from the Online Learning Download Center (https://www.utoledo.edu/dl/main/downloads.html).

For exams, students may use an approved calculator. Any calculator that is programmable, whether graphing or non-graphing, and any calculator based on a phone or other device that can receive or transmit data, are prohibited.

Students are required to have a web-enabled device (smartphone, laptop computer, iPod, or other device that connects to the internet will work) for use in all lecture classes. You may borrow a laptop from the library if necessary.

UNIVERSITY POLICIES

Policy Statement on Non-Discrimination on the basis of Disability (ADA):
The University is an equal opportunity educational institution. Please read The University's Policy Statement on Nondiscrimination on the Basis of Disability Americans with Disability Act Compliance.

ACADEMIC ACCOMMODATIONS

The University of Toledo is committed to providing equal access to education for all students. If you have a documented disability or you believe you have a disability and would like information regarding academic accommodations/adjustments in this course please contact the Student Disability Services Office.

Copyright Notice
The materials in the course website are only for the use of students enrolled in this course for purposes associated with this course, and may not be retained or further disseminated.

ACADEMIC POLICIES

Examinations Make-up exams will not be given. Excused absences will only be given based on conditions outlined below. If an excuse is acceptable, your missed exam score will be replaced with a score equal to the average of the other hour exams. The final exam cannot be excused. For all exams you must show a photo ID card. You may use a non-programmable calculator. You cannot use a programmable calculator or phone.

Exam Absence Policies: Students who will not be able to take an exam at the scheduled time due to an irresolvable conflict must provide written documentation to verify the conflict. This may occur for
students on official university business. The exam will be given at another arranged time before the scheduled test date. Approval must be obtained in advance.

Students who unexpectedly miss an exam due to illness, car accident or similar extreme circumstance should inform their instructor ASAP. Documentation such as a physician’s note, an accident report, etc. is required and must be attached to an Absence Report Form (obtained from BO 2022). An email to the instructor and a telephone call within 24 hours is expected. In all other cases a missed exam will result in 0 on the exam.

Academic Dishonesty: Refer to the university’s policy on Academic Dishonesty in the university catalogue. Violation of this policy can result in a course grade of F with additional university sanctions possible. You will be required to formally acknowledge the terms of our Academic Honesty Statement, by providing a statement through our Blackboard course page.

COURSE EXPECTATIONS
1. Attendance is required for the lecture.
2. Read the textbook before the lecture, the schedule is listed on page 5 of the syllabus.
3. You are responsible for all material and problems covered in class.
4. Bring your web-enabled device and a calculator to every lecture. Each LC question is worth 0.5 points for a correct answer and 0.1 points for an incorrect answer.
5. Mastering Chemistry online homework assignments have to be completed before the deadline.
6. At a minimum, answer the assigned Mastering Chemistry questions. There are many problems found throughout the book that should be worked if you are having difficulty with a certain concept.
7. If you need extra help, see your instructor during office hours or use email. You will not be graded or judged based on the questions that you ask! Seek help in the Chemistry Help Center (BO2043). Additional resources are listed on page 4.

GRADING It is a very high priority to your instructor to ensure fairness and equity in all grading aspects of the course. There is nothing about this class that requires a certain number of students to get a certain grade. We don’t use a curve, so every one of you can achieve the grade that you are willing to earn!

Course Points The following is the distribution of possible points in the course:

<table>
<thead>
<tr>
<th>Component</th>
<th>Points</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Midterm Exams – 3 @100 points each</td>
<td>300 pts</td>
<td>46 %</td>
</tr>
<tr>
<td>Final Exam</td>
<td>200 pts</td>
<td>31 %</td>
</tr>
<tr>
<td>Mastering Chemistry (online HW)*</td>
<td>100 pts</td>
<td>15 %</td>
</tr>
<tr>
<td>Participation points*</td>
<td>50 pts</td>
<td>8 %</td>
</tr>
<tr>
<td>Total:</td>
<td>650 pts</td>
<td></td>
</tr>
</tbody>
</table>

* These categories will have extra points available to allow students a chance to reach the total points. However, points added to the total grade will not exceed total points for a category.

The grading scale for this class is:

<table>
<thead>
<tr>
<th>Grade</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>100-90%</td>
</tr>
<tr>
<td>A-</td>
<td>89-87%</td>
</tr>
<tr>
<td>B+</td>
<td>86-84%</td>
</tr>
<tr>
<td>B</td>
<td>83-80%</td>
</tr>
<tr>
<td>B-</td>
<td>79-76%</td>
</tr>
<tr>
<td>C+</td>
<td>75-73%</td>
</tr>
<tr>
<td>C</td>
<td>72-67%</td>
</tr>
<tr>
<td>C-</td>
<td>66-64%</td>
</tr>
<tr>
<td>D+</td>
<td>63-61%</td>
</tr>
<tr>
<td>D</td>
<td>60-57%</td>
</tr>
<tr>
<td>D-</td>
<td>56-54%</td>
</tr>
</tbody>
</table>
Drop, Withdrawal and Incomplete Grades Course drop and withdrawal procedures have been set by the University. Dropped courses do not appear on your transcript. The deadline for dropping is September 9. You may withdraw from the course and receive a grade of W. The deadline for withdrawal is November 1. W’s do not affect your GPA.

A course grade of Incomplete is given only to those who have completed all but a small percentage of course requirements for an acceptable reason. The Incomplete must be removed before you take CHEM 1120 – Chemistry for the Health Sciences.

All course points and grades will be frequently updated on Blackboard, including a midterm grade. Although this is not your final grade in the course, a midterm grade should be taken seriously with respect to how well you are doing in the course approximately half-way through the semester.

COMMUNICATION GUIDELINES As your instructor, I am here to help, and will do my best to respond to email within 24 to 48 hours. Emails sent to me using your UT email account. Students are expected to check their UT email account and Blackboard frequently for important course information.

STUDENT SUPPORT SERVICES
Course scheduling assistance: Chemistry Department Secretary, Ms. Samples, is in Room BO 2022, telephone 419-530-2698. If you have further questions, or if you need assistance, please talk to her. She takes care of all scheduling changes.

Chemistry Help Center, Room BO 2043, is where the teaching assistants (TAs) hold their office hours, so it is a great place to receive assistance. It is generally open all day Monday through Friday and evenings Monday through Thursday. A schedule will be posted early in the term. No appointment is necessary.

Tutoring support for all UT students is available through the Learning Enhancement Center located in the Carlson Library.

Instructor Office Hours are times when you can stop by my office (no appointment needed) with questions about the course material, grades, and any concerns with the course. My office hour times and location are listed at the top of the syllabus (page 1). If you have a scheduling conflict with all of the listed times and want to meet with me, we can schedule a different time to meet. Please come see me!

COURSE SCHEDULE The following table (page 5) will give you a general idea of our pace throughout the course. Exams will occur on the dates indicated below. Material covered on each exam will be dependent on the pace of the class and will be specified in lecture prior to each exam. Each chapter listed is consistent with the learning outcomes listed on pages 6-7 of the syllabus.
CHEM 1110 – Chemistry for Health Sciences
University of Toledo

TENTATIVE Course Schedule – Fall 2019

<table>
<thead>
<tr>
<th>Week</th>
<th>Dates</th>
<th>Chapter</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Aug 26 - 30</td>
<td>Introduction 1. Chemistry in Our Lives</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Sept 2 - 6</td>
<td>2. Chemistry and Measurements 9/3 is Labor Day. No Classes.</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Sept 9 – 13</td>
<td>3. Matter and Energy Last day to Drop via the web is Mon 9/9</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Sept 23 – 27</td>
<td>4. Atoms Midterm Exam 1, Thurs 9/26, Chapters 1-3</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Oct 7 – 11</td>
<td>6. Ionic and Molecular Compounds No Classes: 10/10 – 10/11 (Fall Break).</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>Oct 14 – 18</td>
<td>6. Ionic and Molecular Compounds</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>Oct 21 – 25</td>
<td>7. Chemical Reactions and Quantities Midterm Exam 2, Thurs 10/24, Chapters 4, 6, and a review of Exam 1</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>Oct 28 – Nov 1</td>
<td>7. Chemical Reactions and Quantities Note: Friday 11/1 is the last day to withdraw from the class</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>Nov 11 – 15</td>
<td>7. Chemical Reactions and Quantities Midterm Exam 3, Thurs 11/21, Chapter 7-8 and a review of Exams 1 and 2</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>Nov 25 – 29</td>
<td>8. Gases</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>Dec 2 – 6</td>
<td>5. Nuclear Chemistry</td>
<td></td>
</tr>
<tr>
<td>Finals Week</td>
<td>Dec 9 – 13</td>
<td>The Final Exam will be comprehensive; including chapters 1-8 from your book.</td>
<td>Final Exam
Tuesday, 12/10, 2:45 – 4:45 PM
YOU MUST TAKE THE FINAL EXAM AT THIS TIME!</td>
</tr>
</tbody>
</table>
SPECIFIC LEARNING OUTCOMES

Chapter 1 Chemistry in Our Lives
- Define the term chemistry and identify substances as chemicals.
- Describe the activities of the scientific method.
- Review math concepts used in chemistry such as place values, positive and negative numbers, percentages, solving equations, interpreting graphs, and writing numbers in scientific notation.

Chapter 2 Chemistry and Measurement
- Write the names and abbreviations for metric or SI units used in measurements of length, volume, mass, temperature, and time.
- Identify a number as measured or exact.
- Determine the number of significant figures in a measured number.
- Adjust calculated answers to give the correct number of significant figures.
- Use the numerical values of prefixes to write a metric equality.
- Write a conversion factor for two units that describe the same quantity.
- Use conversion factors to change from one unit to another.
- Calculate the density or specific gravity of a substance; use the density or specific gravity to calculate the mass or volume of a substance.

Chapter 3 Matter and Energy
- Classify examples of matter as pure substances or mixtures.
- Classify examples of pure substances as elements or compounds.
- Classify examples of mixtures as homogenous or heterogeneous.
- Identify the states and the physical and chemical properties of matter.
- Given a temperature calculate a corresponding temperature on another scale.
- Identify energy as potential or kinetic; convert between units of energy.
- Use specific heat to calculate the quantity of heat lost or gained during a temperature change.
- Describe the changes of states between solids, liquids, and gases; calculate the energy involved.

Chapter 4 Atoms
- Given the name of an element, write its correct symbol; from the symbol, write the correct name.
- Use the periodic table to identify the group and the period of an element.
- Identify elements as metal, nonmetal, or metalloid.
- Describe the electrical charge and location in an atom for a proton, a neutron, and an electron.
- Given the atomic number and the mass number of an atom, state the number of protons, neutrons, and electrons.
- Give the number of protons, neutrons, and electrons in one or more of the isotopes of an element.
- Calculate the atomic mass of an element using the abundance and mass of its naturally occurring isotopes.
- Describe the energy levels, sublevels, and orbitals for the electrons in an atom.
- Draw the orbital diagram and write the electron configuration for an element.
- Use the electron configurations of elements to explain the trends in periodic properties.

Chapter 5 Nuclear Chemistry
- Describe alpha, beta, positron, and gamma radiation.
- Write a balanced nuclear equation showing mass numbers and atomic numbers for radioactive decay.
- Describe the detection and measurement of radiation.
- Given the half-life of a radioisotope, calculate the amount of radioisotope remaining after one or more half-lives.
- Describe the process of nuclear fission and fusion.

Chapter 6 Ionic and Molecular Compounds
- Write the name and formula for a compound containing a polyatomic ion.
Given the formula of a covalent compound, write its correct name; given the name of a covalent compound, write its formula.

Draw the electron-dot formulas for covalent compounds, including multiple bonds and resonance structures.

Use electronegativity to determine the polarity of a bond.

Predict the three-dimensional structure of a molecule and classify it as polar or nonpolar.

Describe the attractive forces between ions, polar molecules, and nonpolar molecules.

Chapter 7 Chemical Reactions and Quantities

- Use conversion factors to change from one unit to another.
- Identify a reaction as a combination, decomposition, single replacement, double replacement, or combustion.
- Define the terms oxidation and reduction; identify the reactant that is oxidized and the reactant that is reduced along with the oxidizing agent and the reducing agent.
- Use Avogadro's number to determine the number of particles in a given amount of moles.
- Calculate the molar mass of a substance and use the molar mass to convert between grams and moles.
- Given a quantity in moles of reactant or product, use a mole-mole factor from the balanced equation to calculate the moles of another substance in the reaction.
- Given the mass in grams of a substance in a reaction, calculate the mass in grams of another substance in the reaction.
- Identify a limiting reactant when given the quantities of two or more reactants; calculate the amount of product formed from the limiting reactant.
- Calculate the percent yield of a reaction given a quantity of starting material.
- Given the heat of reaction, calculate the loss or gain of heat for an exothermic or endothermic reaction.

Chapters 8 Gases

- Describe the kinetic molecular theory of gases and the properties of gases.
- Use the pressure-volume relationship (Boyle's law) to determine the new pressure or volume when the temperature and amount of gas are constant.
- Use the temperature-volume relationship (Charles's law) to determine the new temperature or volume of gas when the pressure and amount of gas are constant.
- Use the temperature-pressure relationship (Gay-Lussac's law) to determine the new temperature or pressure when the volume and amount of gas are constant.
- Use Avogadro's law to determine the amount or volume of a gas when the pressure and temperature are constant.
- Use the combined gas law to find the new pressure, volume, or temperature of a gas when changes in two of these properties are given and the amount of gas is constant.
- Use the ideal gas law equation to solve for P, V, T, or n of a gas when given three of the four values in the ideal gas law.
- Use Dalton's law of partial pressures to calculate the total pressure of a mixture of gases.