Scientists, including these Ohio Sea Grant and Stone Lab researchers, took to Twitter in February to introduce themselves to the public using the hashtag #actuallivingscientist. Did you participate? Tag us in your post and we’ll share it on our social media channels!

You can meet these and other Ohio Sea Grant and Stone Lab researchers at events like our summer island tours (ohioseagrant.osu.edu/visit) or the annual Stone Lab Open House, this year held on September 9!

Visit ohioseagrant.osu.edu/news/calendar to stay updated on other Ohio Sea Grant events across the state.

on facebook: facebook.com/ohioseagrant
facebook.com/stonelaboratory

on twitter: @stonelab | @ohioseagrant

Using Lake Erie Bacteria to Remove Microcystin from Drinking Water

JASON HUNTLEY, UNIVERSITY OF TOLEDO

Some bacteria have the ability to degrade the microcystin toxin MC-LR into non-toxic component parts, including bacteria naturally found in Lake Erie. A previous HABRI project isolated and identified groups of these bacteria, which are now being examined at the genetic level to potentially produce enzymes that can be used in water treatment plants.

Dr. Jason Huntley and his research group had hoped to find already known MC-LR degradation genes, based on studies from Australia, Japan and China. However, those genes were nowhere to be found in Lake Erie bacteria, so new genetic pathways have to be identified.

Current work focuses on using next generation genomic sequencing technology to examine the genetic information from these bacteria in the presence and absence of MC-LR. The toxin triggers an increase in the production of enzymes that attack it, so a gene that is observed in a higher number of copies when MC-LR is present is a likely candidate for further use. Huntley and his group have partnered with investigators at a number of Ohio universities to achieve these results, including the University of Toledo, Bowling Green State University, The Ohio State University and Kent State University.

Above: Lake Erie bacteria that can degrade microcystin may soon become the next technology water treatment plants can employ to remove the toxin from drinking water.