CellPhotoChem Lab

CellPhotoChem Lab

PUBLICATIONS

31. Optical approaches for single-cell and subcellular analysis of GPCR-G protein signaling.
Kankanamge D, Ratnayake K, Senarath K, Tennakoon M, Harmon E, Karunarathne A., Analytical and bioanalytical chemistry. 2019; 411(19):4481-4508. NIHMSID: NIHMS1525807, PubMed [journal]PMID: 30927013 PMCID: PMC6612303

30. G protein αq exerts expression level-dependent distinct signaling paradigms.
Kankanamge D, Tennakoon M, Weerasinghe A, Cedeno-Rosario L, Chadee DN, Karunarathne A., Cellular signalling. 2019; 58:34-43. NIHMSID: NIHMS1524473, PubMed [journal]PMID: 30849518 PMCID: PMC6534355

29. Statins Perturb Gβγ Signaling and Cell Behavior in a Gγ Subtype Dependent Manner.
Tennakoon M, Kankanamge D, Senarath K, Fasih Z, Karunarathne A., Molecular pharmacology. 2019; 95(4):361-375. PubMed [journal]PMID: 30765461 PMCID: PMC6402420

28. Confocal imaging and k-means clustering of GABAB and mGluR mediated modulation of Ca2+ spiking in hippocampal neurons.
Swain S, Gupta RK, Ratnayake K, Priyanka PD, Singh R, Jana S, Mitra K, Karunarathne A, Giri L. ACS chemical neuroscience. 2018;
https://pubs.acs.org/doi/10.1021/acschemneuro.8b00297 (Download PDF)

27. Blue light excited retinal intercepts cellular signaling
Ratnayake, K., Payton, J. L., Lakmal, O. H., and Karunarathne, A. (2018) Blue light excited retinal intercepts cellular signaling. Scientific Reports 8, 10207 https://www.nature.com/articles/s41598-018-28254-8 (Download PDF)

26. G protein gamma (Ggamma ) subtype dependent targeting of GRK2 to M3 receptor by Gbetagamma
Samaradivakara, S., Kankanamge, D., Senarath, K., Ratnayake, K., and Karunarathne, A. Biochemical Biophysical Research Communications, 2018 Jun 11. pii: S0006-291X(18)31295-6. https://www.sciencedirect.com/science/article/pii/S0006291X18312956?via%3Dihub (Download PDF)

25. Melanopsin (Opn4) employs Gαi and Gβγ as major signal transducers
Dinesh Kankanamge, Kasun Ratnayake, Saroopa Samaradivakara, Ajith Karunarathne
http://jcs.biologists.org/content/early/2018/04/27/jcs.212910 (Download PDF)

24. Regulation of G Protein βγ Signaling
Kanishka Senarath, Dinesh Kankanamge, Saroopa Samaradivakara, Kasun Ratnayake, Mithila Tennakoon, Ajith Karunarathne https://www.sciencedirect.com/science/article/pii/S1937644818300182

23. Gγ identity dictates efficacy of Gβγ signaling and macrophage migration
Kanishka Senarath , John L Payton , Dinesh Kankanamge , Praneeth Siripurapu , Mithila Tennakoon and Ajith Karunarathne
http://www.jbc.org/content/early/2018/01/09/jbc.RA117.000872.abstract (Download PDF)

22. Two independent but synchronized Gβγ subunit-controlled pathways are essential for trailing-edge retraction during macrophage migration Siripurapu P, Kankanamge D, Ratnayake K, Senarath K, Karunarathne A. The Journal of biological chemistry. 2017; 292(42):17482-17495.
(Download PDF)

21. Measurement of GPCR-G protein activity in living cells
Ratnayake K, Kankanamge D, Senarath K, Siripurapu P, Weis N, Tennakoon M, Payton JL, Karunarathne A. Methods in cell biology. 2017; 142:1-25.

20. Comparison of Calcium Dynamics and Specific Features for G Protein-Coupled Receptor-Targeting Drugs Using Live Cell Imaging and Automated Analysis
Gupta, R. K., Swain, S., Kankanamge, D., Priyanka, P. D., Singh, R., Mitra, K., Karunarathne, A., and Giri, L. (2017) . SLAS discovery, 2472555217693378
(Download PDF)

19. Reversible G Protein βγ9 Distribution-Based Assay Reveals Molecular Underpinnings in Subcellular, Single-Cell, and Multicellular GPCR and G Protein Activity
Senarath, K., Ratnayake, K., Siripurapu, P., Payton, J. L., and Karunarathne, A. (2016) . Analytical chemistry 88, 11450-11459
(Download PDF)

18. Facilitation of TRPV4 by TRPV1 is required for itch transmission in some sensory neuron populations
Kim, S., Barry, D. M., Liu, X.-Y., Yin, S., Munanairi, A., Meng, Q.-T., Cheng, W., Mo, P., Wan, L., Liu, S.-B., Ratnayake, K., Zhao, Z.-Q., Gautam, N., Zheng, J., Karunarathne, W. K. A., and Chen, Z.-F. (2016) . Science signaling 9, ra71-ra71
(Download PDF)

17. Subcellular optogenetics: Controlling signaling and single cell behaviors
Karunarathne, W.K., O’Neill, P., Gautam, N.: ‘Subcellular optogenetics: Controlling signaling and single cell behaviors’, Journal of Cell Sciences, 2014 (Accepted) Karunarathne, W.K., O’Neill, P., Gautam, N.

16. Descending Control of Itch Transmission by the Serotonergic System via 5-HT1A-Facilitated GRP-GRPR Signaling
Zhao Z., Liu X., Jeffry J., Ajith Karunarathne WK., Munanairi A., Sun Y., Wan L., Huo F., Li H., Wu Z., Kim J., Barry DM.,Li J., Renner. KJ., Gautam N., Chen CF.: ‘Descending Control of Itch Transmission by the Serotonergic System via 5-HT1A-Facilitated GRP-GRPR Signaling’, Neuron, 2014 (available online). Zhao Z., Liu X., Jeffry J., Ajith Karunarathne WK., Munanairi A., Sun Y., Wan L., Huo F., Li H., Wu Z., Kim J., Barry DM.,Li J., Renner. KJ., Gautam N., Chen CF.

15. G-Protein Subunit Translocation Embedded Network Motif Underlies GPCR Regulation of Calcium Oscillations. Biophysical Journal, 2014 107, 242-254
Giri, L., Patel, Anilkumar K., Karunarathne, W.K.A., Kalyanaraman, V., Venkatesh, K.V., and Gautam, N. A G-Protein Subunit Translocation Embedded Network Motif Underlies GPCR Regulation of Calcium Oscillations. Biophysical Journal, 2014 107, 242-254. Giri, L., Patel, Anilkumar K., Karunarathne, W.K.A., Kalyanaraman, V., Venkatesh, K.V., and Gautam, N. A

14. The structure of dynamic GPCR signaling networks
O’Neill, P., Giri, L., Karunarathne, W.K., Patel, A., Venkatesh, K., Gautam, N.: ‘The structure of dynamic GPCR signaling networks’, WIREs Systems Biology and Medicine, 2013. doi: 10.1002/wsbm.1249 O’Neill, P., Giri, L., Karunarathne, W.K., Patel, A., Venkatesh, K., Gautam, N.

13. Optical control demonstrates switch-like PIP3 dynamics underlying the initiation of immune cell migration
Karunarathne, W.A., Giri, L., Patel, A.K., Venkatesh, K.V., and Gautam, N.: ‘Optical control demonstrates switch-like PIP3 dynamics underlying the initiation of immune cell migration’, Proceedings of the National Academy of Sciences, 2013, 110, (17), pp. E1575-E1583 Karunarathne, W.A., Giri, L., Patel, A.K., Venkatesh, K.V., and Gautam, N.

12. Optically triggering spatiotemporally confined GPCR activity in a cell and programming neurite initiation and extension
Karunarathne, W.A., Giri, L., Kalyanaraman, V., and Gautam, N.: ‘Optically triggering spatiotemporally confined GPCR activity in a cell and programming neurite initiation and extension’, Proceedings of the National Academy of Sciences, 2013, 110, (17), pp. E1565-E1574 Karunarathne, W.A., Giri, L., Kalyanaraman, V., and Gautam, N.

11. G-protein signaling leverages subunit-dependent membrane affinity to differentially control βγ translocation to intracellular membranes
O’Neill, P.R., Karunarathne, W.A., Kalyanaraman, V., Silvius, J.R., and Gautam, N.: ‘G-protein signaling leverages subunit-dependent membrane affinity to differentially control βγ translocation to intracellular membranes’, Proceedings of the National Academy of Sciences, 2012, 109, (51), pp. E3568-E3577 O’Neill, P.R., Karunarathne, W.A., Kalyanaraman, V., Silvius, J.R., and Gautam, N.

10. Measuring P2X1 receptor activity in washed platelets in the absence of exogenous apyrase
Anderson, K.B., Karunarathne, W., and Spence, D.M.: ‘Measuring P2X1 receptor activity in washed platelets in the absence of exogenous apyrase’, Analytical Methods, 2012, 4, (1), pp. 101-105 Anderson, K.B., Karunarathne, W., and Spence, D.M.

9. All G protein βγ complexes are capable of translocation on receptor activation
Ajith Karunarathne, W., O’Neill, P.R., Martinez-Espinosa, P.L., Kalyanaraman, V., and Gautam, N.: ‘All G protein βγ complexes are capable of translocation on receptor activation’, Biochemical and biophysical research communications, 2012, 421, (3), pp. 605-611 Ajith Karunarathne, W., O’Neill, P.R., Martinez-Espinosa, P.L., Kalyanaraman, V., and Gautam, N.

8. Alteration of Golgi structure in senescent cells and its regulation by a G protein γ subunit
Cho, J.-H., Saini, D.K., Karunarathne, W., Kalyanaraman, V., and Gautam, N.: ‘Alteration of Golgi structure in senescent cells and its regulation by a G protein γ subunit’, Cellular signalling, 2011, 23, (5), pp. 785-793 Cho, J.-H., Saini, D.K., Karunarathne, W., Kalyanaraman, V., and Gautam, N.

7. Use of the red blood cell as a simple drug target and diagnostic by manipulating and monitoring its ability to release adenosine triphosphate (ATP)
Tolan, N.V., Meyer, J.A., Ku, C.-J., Karunarathne, W., and Spence, D.M.: ‘Use of the red blood cell as a simple drug target and diagnostic by manipulating and monitoring its ability to release adenosine triphosphate (ATP)’, Pure and Applied Chemistry, 2010, 82, (8), pp. 1623-1634 Tolan, N.V., Meyer, J.A., Ku, C.-J., Karunarathne, W., and Spence, D.M.

6. Regulation of Golgi structure and secretion by receptor-induced G protein βγ complex translocation
Saini, D.K., Karunarathne, W.A., Angaswamy, N., Saini, D., Cho, J.-H., Kalyanaraman, V., and Gautam, N.: ‘Regulation of Golgi structure and secretion by receptor-induced G protein βγ complex translocation’, Proceedings of the National Academy of Sciences, 2010, 107, (25), pp. 11417-11422 Saini, D.K., Karunarathne, W.A., Angaswamy, N., Saini, D., Cho, J.-H., Kalyanaraman, V., and Gautam, N.

5. Hydroxyurea stimulates the release of ATP from rabbit erythrocytes through an increase in calcium and nitric oxide production
Raththagala, M., Karunarathne, W., Kryziniak, M., McCracken, J., and Spence, D.M.: ‘Hydroxyurea stimulates the release of ATP from rabbit erythrocytes through an increase in calcium and nitric oxide production’, European journal of pharmacology, 2010, 645, (1), pp. 32-38 Raththagala, M., Karunarathne, W., Kryziniak, M., McCracken, J., and Spence, D.M.

4. The dual nature of extracellular ATP as a concentration-dependent platelet P2X1 agonist and antagonist
Karunarathne, W., Ku, C.-J., and Spence, D.M.: ‘The dual nature of extracellular ATP as a concentration-dependent platelet P2X1 agonist and antagonist’, Integrative Biology, 2009, 1, (11-12), pp. 655-663 Karunarathne, W., Ku, C.-J., and Spence, D.M.

3. Metal-activated C-peptide facilitates glucose clearance and the release of a nitric oxide stimulus via the GLUT1 transporter
Meyer, J.A., Froelich, J.M., Reid, G.E., Karunarathne, W.K., and Spence, D.M.: ‘Metal-activated C-peptide facilitates glucose clearance and the release of a nitric oxide stimulus via the GLUT1 transporter’, Diabetologia, 2008, 51, (1), pp. 175-182 Meyer, J.A., Froelich, J.M., Reid, G.E., Karunarathne, W.K., and Spence, D.M.

2. Fluorescence determination of nitric oxide production in stimulated and activated platelets
Ku, C.-J., Karunarathne, W., Kenyon, S., Root, P., and Spence, D.: ‘Fluorescence determination of nitric oxide production in stimulated and activated platelets’, Analytical chemistry, 2007, 79, (6), pp. 2421-2426 Ku, C.-J., Karunarathne, W., Kenyon, S., Root, P., and Spence, D.

1. Red blood cell stimulation of platelet nitric oxide production indicated by quantitative monitoring of the communication between cells in the bloodstream
Carroll, J.S., Ku, C.-J., Karunarathne, W., and Spence, D.M.: ‘Red blood cell stimulation of platelet nitric oxide production indicated by quantitative monitoring of the communication between cells in the bloodstream’, Analytical chemistry, 2007, 79, (14), pp. 5133-5138 Carroll, J.S., Ku, C.-J., Karunarathne, W., and Spence, D.M.

Last Updated: 5/27/20